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Abstract 
In this paper we considered new time series model which can describe long memory and nonlinearity simultaneously, and which can be used to assess the relative importance of these attributes in empirical time series. Upon fitting it to the monthly deviations from PPP for six countries, we found that a parsimonious version of the model captures the salient features of the data rather well. When we compared the model with various competitive models, we found that a linear fractionally integrated model could certainly be improved upon by including nonlinear features. Indeed, once we added these, there remained no evidence of nonlinearity and time-varying parameters. However, the introduction of long memory into a STAR model did not lead to an improved fit. The key distinction between these two models lies in their implied long-run properties. We highlighted these differences using impulse response functions and related measures of the persistence of shocks.
Keywords: ESTAR; real exchange rate; PPP; Fractional Integration; Generalized Impulse Response Function
JEL classification: C53; F31
Acknowledgement 
This work was supported by the Brain Korea 21 Project in 2004. The results reported in this paper were generated using GAUSS 5.0.

I. INTRODUCTION
Two dominant stylized facts have characterized the evolution of real exchange rates during the last decade. Firstly, real exchange rates have shown a sustained trending appreciation and depreciation. Up until recently, such an appreciation was viewed as primarily due to a Balassa-Samuelson effect affecting the sector of tradables, see for instance, De Broeck and Torsten (2001), Bostgen and Coricelli (2001), Arratibel, Rodriguez-Palenzuela and Thimann (2002), Egert (2002a, 2002b), Strahilov (2002). However, whether the Balassa-Samuelson has been strong is today a subject of controversy. Indeed, other factors have been at play and may also have their importance in explaining part of the observed real appreciation. This first feature is commonly called long memory, which have been successfully implemented for exchange rates (Diebold et al., 1991; Cheung, 1993; Baillie and Bollerslev, 1994), inflation rates (Hassler and Wolters, 1995; Baillie et al., 1996), and unemployment (Diebold and Rudebusch, 1989; Tschernig and Zimmermann, 1992; Koustas and Veloce, 1996; Crato and Rothman, 1996), see Baillie (1996) for a broad survey. The time series models that are used in these studies to describe this feature belong to the class of fractionally integrated models, introduced by Granger and Joyeux (1980) and Hosking (1981). 
The second feature is commonly called nonlinearity. There are lots of recent studies on nonlinear models of real exchange rate behavior in the empirical international finance literature. They provide strong evidence that nonlinear model specifications of real exchange rate behavior are well motivated by theoretical models incorporating transaction costs such as transportation costs, tariffs and nontariff barriers, as well as any other costs that incur in international trade (Obstfeld and Rogoff, 2000). Intuitively, transaction costs create a band for the real exchange rate within which arbitrage is not profitable, so that deviations from purchasing power parity (real exchange rate fluctuations) are not adjusted. However, outside of the band, arbitrage works and the real exchange rate is mean-reverting. The time series models which are considered most often for describing and forecasting the nonlinear properties of real exchange rates are either of the Markov-switching type, see Hamilton (1989), or of the threshold autoregressive (TAR) type, see Tong (1990), or of the smooth transition autoregressive (STAR) type, see Granger and Terasvirta (1993), Terasvirta (1994, 1998) and van Dijk et al. (2002)
.
Interestingly, at least as far as we know, there have been few attempts to discriminate between the long memory and nonlinear properties of real exchange rates, and we attempt to describe these two dominant features simultaneously with a single time series model. Such attempts would be useful though, as several studies document that one may be tempted to fit a long-memory model to nonlinear data, and vice versa. For example, Granger and Terasvirta (1999) and Davidson (2000) demonstrate that nonlinear models may generate time series to which one may want to fit linear long-memory models. On the other hand, data generated from long-memory models may appear to have nonlinear properties, see Andersson et al. (1999). As occasional structural breaks amount to a rather stylized nonlinear model, one may expect that neglecting structural breaks also spuriously suggests the presence of long memory
. The most recently work of Dufrenot et al. (2003) suggests long-memory regime-switching models to capture the adjustment towards the long run equilibrium, in which we take into account two types of persistence: a permanent component due to the influence of real factors and a nonlinear component where persistence is associated with time-dependent effects. 
The outline of our paper is as follows. In Section II, we discuss the representation of the model, which we will briefly introduce the fractionally integrated smooth transition autoregressive (FI-STAR) model in subsection 1, and tests for nonlinearity in fractionally integrated autoregressive models in subsection 2, and generalized impulse response function considering the dynamic behavior of an estimated FI-STAR model in subsection 3. In Section III, we specify a FI-STAR model for a time series of monthly real exchange rates and provide the empirical results. In Section IV, we conclude the paper with a range of possible topics for further research.

II. METHDOLOGY
2.1 The FI-ESTAR Model 

A model that allows for long memory in an observed time series 
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 is a covariance stationary process, e.g., an autoregressive moving average (ARMA) process, and the parameter d is possibly noninteger, in which case the time series 
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is nonstationary, but the limiting value of the impulse response function is equal to 0, such that shocks do not have permanent effects.

To capture nonlinear features in a time series 
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, one can choose from a wide variety of nonlinear models, see Franses and van Dijk (2000) for a recent survey. A model which enjoys a fair amount of popularity, mainly due to its empirical tractability, is the smooth transition autoregressive (STAR) model, given by

(2)
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determines the degree of mean reversion and is bounded between ‘0’ and ‘1’. The parameter 
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. A simple transition function suggested by Granger and Terasvirta (1993) and Terasvirta (1994), which is particularly attractive in the present context, is the exponential function:
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in which case equation (2) would be termed an exponential STAR or ESTAR model. The exponential transition function, 
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, and is symmetrically inverse-bell shaped around zero
. These properties of the ESTAR model are attractive in the present modeling context because they allow a smooth transition between regimes and symmetric adjustment of the real exchange rate for deviations above and below the equilibrium level. The transition parameter 
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 determines the speed of transition between the two extreme regimes, with lower absolute values of 
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 implying slower transition
. 
It is also instructive to reparameterize the STAR model (2) as follows:
(4)
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 are crucial. The discussion of the effect of transactions costs in the previous section suggests that the larger the deviation from PPP the stronger will be the tendency to move back to equilibrium
.
In this paper we combine the two representations in (1) and (2) into the following new time series model introduced by Dijk el al. (2002):
(5)
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This FI-ESTAR model restricts the long-run properties of the time series 
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 to be constant, as these are determined by the fractional differencing parameter d. However, the short-run dynamics, which to a large extent are determined by the AR coefficients, are allowed to vary as the AR coefficients can switch between 
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The above formulation is equivalent to assume that the 
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 series directly follows an infinite order of fractionally integrated ESTAR model:
(6)
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where L is the lag operator and 
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2.2 Linearity Tests

Testing linearity against STAR may be complicated by the presence of unidentified nuisance parameters under the null hypothesis because the STAR model contains parameters which are not restricted by the null hypothesis. Davies (1977, 1987) first considers the problem of unidentified nuisance parameters under the null hypothesis.
 The main consequence of the presence of such nuisance parameters is that the conventional statistical theory is not available for obtaining the asymptotic null distribution of the test statistics. To overcome this problem, Luukkonen, Saikkonen and Terasvirta (1988) propose the solution, which is to replace the transition function 
[image: image58.wmf](

)

c

s

G

t

,

;

g

 by a suitable Taylor series approximation. In the reparametrized equation, the identification problem is no longer present, and linearity can be tested by means of a Lagrange Multiplier [LM] statistic with a standard asymptotic F-distribution under the null hypothesis. 
In order to derive a linearity test against (2), we follow the procedure suggested by Luukkonen et al. (1988) and Saikkonen and Luukkonen (1988). If the delay parameter 
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 is fixed, the linearity test against ESTAR consists of estimating by ordinary least squares the auxiliary regression:
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degrees of freedom. Luukkonen et al. (1988) also suggested that a parsimonious, or economy, version of the 
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The LM-type tests in fact assume constant conditional variance. Neglected heteroskedasticity has similar effects on tests for nonlinearity as residual autocorrelation, in the sense that it may lead to spurious rejection of the null hypothesis. Davidson and MacKinnon (1985) and Wooldridge (1990, 1991) develop specification tests which can be used in the presence of heteroskedasticity, without the need to specify the form the heteroskedasticity (which often is unknown) explicitly. Their procedures may be readily applied to robustify the linearity tests against STAR, see also Granger and Terasvirta (1993, pp. 69-70). The heteroskedasticity robust variants of the 
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To determine the delay parameter l, Tsay (1989) suggest the procedure in his specification of TAR models. This involves repeating the linearity test for a set of plausible values of l and simply choosing the delay parameter that minimize the 
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Assuming that linearity is rejected, we can proceed to estimate and evaluate the nonlinear model. Estimation of the parameters in the FI-ESTAR model (5) and (6) are a relatively straightforward application of nonlinear least squares (NLS). Under the additional assumption that the errors are normally distributed, NLS is equivalent to maximum likelihood. Otherwise, the NLS estimates can be interpreted as quasi maximum likelihood estimates. Under certain regularity conditions, which are discussed in Wooldridge (1994) and Potscher and Prucha (1997), among others, the NLS estimates are consistent and asymptotically normal.
2.3 Generalized Impulse Response Function
Another useful way of considering the dynamic behaviour of estimated FI-ESTAR and ESTAR models is to examine the effects of the shocks 
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In nonlinear models, the impact of a shock depends on the history of the process, as well as on the sign and the size of the shock. Furthermore, if the effect of a shock on the time series h > 1 periods ahead is to be analyzed, the assumption that no shocks occur in intermediate periods may give a misleading picture of the propagation mechanism of the model. The Generalized Impulse Response Function (GIRF), introduced by Koop et al. (1996) offers a useful generalization of the concept of impulse response to nonlinear models. The GIRF for a specific shock 
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for h = 0, 1, 2,…. In the GIRF, the expectation of 
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 occurs at time t is conditioned only on the history and this shock. Put differently, the problem of dealing with shocks occurring in intermediate time periods is handled by averaging them out. Given this choice, the natural benchmark profile for the impulse response is the expectation of 
[image: image97.wmf]}

{

h

t

r

+

 conditional only on the history of the process 
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. Thus, in the benchmark profile the current shock is averaged out as well. It is easily seen that for linear models the GIRF is equivalent to the TIRF.

The GIRF is a function of 
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Definition (10) allows a number of conditional versions of potential interest. For example, one might consider only a particular history 
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 and treat the GIRF as a random variable in terms of 
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(11)
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It is equally possibly to reverse the roles of the shock and the history by fixing the shock at 
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 and defining the GIRF to be a random variable with respect to the history 
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. In general, one might consider the GIRF to be random conditional on particular subsets A and B of shocks and histories respectively, that is, 
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. For example, one might condition on all histories in a particular regime and consider only negative shocks
.

III. EMPIRICAL ANALYSIS
3.1 Data Analysis
The series we consider represent the real exchange rate at the monthly frequency covering the period January 1975 until December 1998 (288 observations) for Germany, France, and Italy and covering the period January 1975 until November 2002 (335 observations) for UK, Japan, and Switzerland. The series 
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 is the logarithm of the nominal exchange rate (domestic price of foreign currency), 
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 denote the logarithms of the domestic and foreign consumer price levels, which are seasonally adjusted respectively. The real exchange rate may thus be interpreted as a measure of the deviation from PPP. 
Table 1(a) gives some summary statistics for the deviation from PPP, nominal exchange rate, and domestic and foreign price levels. Mean returns are on average positive in all markets. From the skewness and kurtosis of the series, 
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, it is evident that the 
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 is symmetric, whilst the dispersion of a large number of observed values is very small, which implies a leptokurtic frequency curve. This means that returns do not follow a normal distribution, but present a sharp peak and fat tail distribution. This is confirmed by the Jaque-Bera test for normality. In addition, the Ljung and Box (1976) 
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 statistics, which evaluates the independence between the series in conditional mean, denotes that all return series investigated are suffering from long-run dependencies. Table 1(a) also reports Ljung and Box (1976) 
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 portmanteau statistics for the tenth autocorrelations of the squared real exchange rates, which is clear that there is significant, nonlinear temporal dependence in the squared adjusted returns series, suggesting that the volatility of adjusted returns follows an ARCH-type model. Figure 1 plots the lag 1 through 100 sample autocorrelations of real exchange rates. The autocorrelations do clearly exhibit a pattern of slow decay and persistence, in which they do not appear in the two 95% Bartlett (1946) confidence bands for no serial dependence. From figure 1, we roughly know that the fractionally integrated models may be applied to real exchange rates. 
As a preliminary exercise, we test for unit root behavior of each of 
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 by calculating standard augmented Dickey-Fuller (ADF) test statistics, reported in Panel (b) of Table 1. In each case, the number of lags is chosen such that no residual autocorrelation was evident in the auxiliary regressions.
 In keeping with the very large number of studies of unit root behavior for these time series and conventional finance theory, we are in each country unable to reject the unit root null hypothesis applied to each of the nominal exchange rate for all countries at conventional nominal levels of significance. On the other hand, the results in domestic price series are mixed, where we can strongly reject the unit root hypothesis for Italy, UK, and Japan, but not for the other countries. 
Most of standard tests for stationarity involve a null hypothesis containing a unit root. Classical statistical hypothesis testing generally ensures that a null hypothesis is only rejected in the face of very strong evidence against it. If an investigator wishes to test stationarity as a null and has strong priors in its favour, then it is not clear that the conventional Dickey-Fuller parameterization is very useful. Kwiatkowski, Phillips, Schmidt, and Shin (1992) (henceforth KPSS) have developed an alternative approach of testing for unit roots and they impose stationarity under the null. Table 2 presents the results of applying the ADF and KPSS tests to the six real exchange rates. Although it is possible to strongly reject I(0) for all countries, there is not clear evidence that real exchange rates may not be generated by an I(0) or I(1) process and is not indicative of fractional integration. However, the results do not show strongly a rejection the unit root null hypothesis applied to 
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, suggesting non-stationarity of the deviation from PPP and possibly the absence of a cointegrating relationship between the nominal exchange rate, and domestic and foreign price indices.

In order to examine whether real exchange rates are fractionally cointegrated we consider Geweke and Porter-Hudak (1983)’s test and its results are reported in Table 3. The results vary little across the different values of ( under consideration. Table 3 shows that all of the estimates of d lie between 0 and 1, suggesting possible fractional integration behavior. The results of the formal hypothesis testing indicate significant evidence of d<1 in three countries of Germany, France, and Italy, though there is no clear evidence for non-EMU countries of UK, Japan, and Switzerland. Moreover, in all cases the estimates of d are significantly greater than zero. The results thus indicate the presence of cointegration and possibly fractional cointegration for EMU countries and not for non-EMU countries
. 
3.2 Linearity Test Results
We start by specifying a fractionally integrated autoregressive (ARFI) model. We allow for a maximum lag of 18 first differences. Both AIC and BIC indicate that ARFI(p,d) models with 1 lagged level are appropriate. The ARFI models that form the basis of our linearity tests are shown in Table 4. In particular, the estimates of d range from 0.264 for France to 0.983 for Italy, suggesting that real exchange rates are stationary for Germany and France and nonstationary but mean-reverting for the other countries. The model appears adequate in that the errors seem serially uncorrelated from the 
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 statistic, whereas the excess kurtosis and apparent heteroskedasticity are caused entirely by large positive residuals from the 
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 statistic. The skewness of the errors is a more serious problem for Japan, as it does not appear to be due to only a few aberrant residuals.

The next stage is to test linearity against STAR nonlinearity using the LM-type statistics discussed in Section II. We set the maximum value of the delay parameter 
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 as transition variable. The tests are based on an ARFI model with 15 lagged levels under the null hypothesis. The 
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-values of the standard tests indicate that linearity can be rejected most strongly when d=1 for GER and UK, d=2 or 3 for FRN, d=3 for ITA, d=4 for JPN, and d=10 for SWI. The results of the robust tests suggest that the evidence for nonlinearity might perhaps be due to neglected heteroskedasticity, in which the test statistics of 
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, respectively. From the results in Table 5, we note that there is serious evidence of heteroskedaticity for all countries and thus heteroskedasticity robust test statistics are appropriate for our purpose. From the 
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-values of the heteroskedasticity robust, linearity can be rejected most strongly when d=7 for GER and FRN, d=4 for ITA, d=6 for UK, d=12 for JPN, and d=10 for SWI
. Furthermore, an ESTAR model is appropriate for selected optimal transition variables from 
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-values of the LM-type statistics which test the sub-hypotheses in the specification procedures of Terasvirta (1994), Escribano and Jorda (1999).

3.3 Estimated ESTAR and FI-ESTAR Models
The results reported and discussed in the previous section led to the choice of ESTAR and FI-ESTAR models for each of the real exchange rates examined, with the various autoregressive lag lengths and delay parameters. Starting with an unrestricted AR 15 lagged first differences and ARFI models with 15 lagged levels in both regimes, we sequentially remove the lagged variables with the lowest t-statistic (in absolute value) until all parameters of the remaining lagged first differences have t-statistics exceeding 1 in absolute value. The final model is estimated and Table 6 and 7 present parameter estimates and residual diagnostics of ESTAR and FI-STAR models for six countries’ CPI-based real exchange rates, respectively.

In the short-run, the deviation from PPP is dominated by nonlinear patterns. Table 6 provides the empirical results of ESTAR models. The 
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 estimates vary widely across countries, with the speeds of adjustment for some real exchange rates being much higher than others. Their values generally support the ESTAR model’s adequacy, with for most series being clearly distinguishable from zero. None of countries satisfy the condition 
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, indicating explosive behavior in the middle regime. However, the stability condition that 
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is satisfied. For all series, 
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 cannot be distinguished from zero (unit-root behavior in the middle regime), and the model is essentially defined by 
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. It must be noted that evidence of nonlinear dynamic adjustment to PPP as well as the magnitude of the speed-of-adjustment coefficient 
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 by country can vary. Residual diagnostics indicate that the model generates non-autocorrelated errors at the five per cent level for every series studied. ARCH effects are present in the residual series for all countries from the squared Ljung-Box statistics. In summary, the ESTAR models appear to provide a clearly acceptable representation for the adjustment process toward PPP for the CPI-based real exchange rates. Models of linear adjustment may be rejected for the majority of series originally considered, and for many of those series, the ESTAR model provides a superior alternative.

Based on the linearity test results, we proceed by estimating a FI-ESTAR model with the chosen transition variable and the chosen unbalanced autoregressive order. From Table 7, the point estimates of 
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 range from 3.670 for UK to 24.818 for Japan, implying that the transition between the regimes associated with the lower regime and upper regime in the FI-ESTAR model occurs quite fast. The estimates of the fractional differencing parameter d are all significantly different from both 0 and 1. To further examine whether the FI-STAR model improves upon ESTAR models, we estimate FI-ESTAR models with d=1 imposed a priori. The residual variances of the FI-ESTAR model are clearly smaller than those of the ESTAR model except France and Italy. Both the skewness and excess kurtosis are reduced in the FI-ESTAR model, although normality of the errors is still rejected. However, according to both AIC and BIC the FI-ESTAR model is not preferred over the ESTAR model. The tests against ARCH do not reject the null hypothesis any longer. Finally, results of the diagnostic tests suggest that the model is adequate as there is no evidence for remaining residual autocorrelation, time-variation in the parameters or remaining nonlinearity
.

Figure 2 graphs the estimated transition functions for time series of the CPI-based deviations from PPP. The figure confirms the nonlinearity of the series and the appropriateness of the exponential transition function. The range of the transition function values indicates that convergence to long-run PPP is very quickly. It is interesting that the limiting case of 
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 is actually attained over the range of observed PPP deviations for all countries. 

3.4 Generalized Impulse Response Functions
To gain further insight in the dynamic properties of the estimated FI-ESTAR model, we assess the propagation of shocks by computing generalized impulse response functions. We compute history and shock specific GIRFs as defined in (11) for all observations and values of the normalized initial shock equal to 
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denotes the estimated standard deviation of the residuals from the FI-ESTAR model. For each combination of history and initial shock, we compute 
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 for horizons h = 0, 1, …, N with N selected arbitrarily to compare with ESTAR models. To generate future sample paths of 
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 from the FI-ESTAR model, we use the infinite order ESTAR representation truncated at 120 lags. The conditional expectations in (11) are estimated as the means over 500 realizations of 
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 and using randomly sampled residuals of the estimated FI-ESTAR model elsewhere. We follow the same procedure to compute GIRFs for the ESTAR model in first differences with a lagged level term. All GIRFs are

normalized such that they equal 
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The estimated generalized impulse response functions in both FI-ESTAR and ESTAR models are graphed in Figure 3 for each of the real exchange rates, conditional on average initial history of the real exchange rates over the sample period. It appears clearly that two interesting points in the generalized impulse responses exist. First, these graphs illustrate very clearly the nonlinear nature of the adjustment, with the generalized impulse response functions for larger shocks decaying much faster than those for smaller shocks. Second, a notable difference between the GIRFs of the ESTAR and FI-ESTAR models is that the impulse responses for the FI-ESTAR model are very persistent, but also the GIRFs in the ESTAR model decay much faster than the GIRFs in the FI-ESTAR model. In particular, the GIRFs in the FI-ESTAR model tend to be hyperbolically decayed during the first 20 months for Germany, after which their effect gradually declines towards zero. It is also noticeable that the GIRFs from the ESTAR model exhibit a relatively rapid exponential decay, which is marked contrast to those of the FI-ESTAR model.
IV. CONCLUSIONS
In this paper we considered new time series model which can describe long memory and nonlinearity simultaneously, and which can be used to assess the relative importance of these attributes in empirical time series. Upon fitting it to the monthly deviations from PPP for six countries, we found that a parsimonious version of the model captures the salient features of the data rather well. When we compared the model with various competitive models, we found that a linear fractionally integrated model could certainly be improved upon by including nonlinear features. Indeed, once we added these, there remained no evidence of nonlinearity and time-varying parameters. However, the introduction of long memory into a STAR model did not lead to an improved fit. The key distinction between these two models lies in their implied long-run properties. We highlighted these differences using impulse response functions and related measures of the persistence of shocks.

REFERNECES

Andersson, M.K., B. Eklund and J. Lyhagen (1999), A simple linear time series model with misleading nonlinear properties, Economics Letters 65, 281-284.

Arratibel, O., Rodriguez-Palenzuela, D. and C. Thimann (2002), Inflation dynamics and

dual inflation in accession countries: a new Keynesian perspective, Working paper 132, European Central Bank.

Andrews, D.W.K. and W. Ploberger (1994), Optimal tests when a nuisance parameter is present only under the alternative, Econometrica 62, 1383-1414.
Baillie, R.T. (1996), Long memory processes and fractional integration in econometrics, Journal of Econometrics 73, 5-59.

Baillie, R.T., T. Bollerslev (1994), The long memory of the forward premium, Journal of International Money and Finance 13, 565-571.

Baillie, R.T., C.F. Chung, and M.A. Tieslau (1996), Analyzing inflation by the fractionally integrated ARFIMA-GARCH model, Journal of Applied Econometrics 11, 23-40.

Bartlett, M.S. (1946), On the theoretical specification of sampling properties of autocorrelated time series, Journal of the Royal Statistical Society B 8, 27-41.

Bos, C., P.H. Franses and M. Ooms (1999), Re-analyzing inflation rates: evidence of long memory and level shifts, Empirical Economics 24, 427-449.
Bostgen, J. and F. Coricelli (2001), Real exchange rate dynamics in transition economies, Discussion paper 2869, Center for Economic Policy Research.

Cheung, Y.-M. and K. Lai (1993), Long-run purchasing power parity during the recent Boat, Journal of　International Economics 34, 181-192.

Chung, S-K (1997), Cointegrating Vectors in a Multivariate I(d) Regression                   and Monte Carlo Simulations for size and power, mimeo.
Crato, N. and P. Rothman (1996), Measuring hysteresis in unemployment rates with long memory models, Unpublished manuscript, East Carolina University.

Davidson, R. and J.G. MacKinnon (1985), Heteroskedasticity-robust tests in regression directions, Annales de l'INSEE 59/60, 183-218.

Davidson, J., 2000. When is a time series I(0)? Evaluating the memoryproperties of nonlinear dynamic models, Unpublished manuscript, Cardiff University.

Davies, R.B. (1977), Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika 64, 247-254.

Davies, R.B. (1987), Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika 74, 33-43.

De Broeck, M. and T. Torsten (2001), Interpreting real exchange rate movements in transition economies, Working Paper 01/56, IMF, Washington.
Diebold, F.X. and A. Inoue (2001), Long memory and regime switching, Journal of Econometrics 105, 131-159.

Diebold, F.X. and G.D. Rudebusch (1989), Long memory and persistence in aggregate output, Journal of Monetary Economics 24, 189-209.

Diebold, F.X., S. Husted and M. Rush (1991), Real exchange rates under the gold standard. Journal of Political Economy 99, 1252-1271.

van Dijk, D., Franses, P.H. and R. Paap (2002), A nonlinear long memory model, with an application to US unemployment, Journal of Econometrics 110, 135-165.

G. Dufrenot, E. Grimaud, E. Latil and Valérie Mignon (2003), Real exchange rate misalignment in Hungary: a fractionally integrated threshold model, Working papers No 2003-07, THEMA 

Egert, B. (2002a), Does the productivity bias hypothesis held in the transition? Evidence

from five CEE economies in the 1990s, Eastern European Economies 40, 5-37.

Egert, B. (2002b), Investigating the Balassa-Samuelson hypothesis in the transition. Do we understand what we see? A panel study, Economics of transition 10, 1-36.

Escribano, A. and O. Jorda (1999), Improved testing and specification of smooth transition regression models, in P. Rothman (ed.), Nonlinear Time Series Analysis of Economic and Financial Data, Boston: Kluwer, pp. 289-319.

Franses, P.H. and D. van Dijk (2000), Nonlinear Time Series Models in Empirical Finance, Cambridge University Press, Cambridge.

Fuller, W. A. (1976), Introduction to statistical time series, New York: Wiley & Sons.

Geweke, J. and S. Porter-Hudak (1983), The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 221-238.

Granger, C.W.J. and T. Terasvirta (1993), Modelling Nonlinear Economic Relationships, Oxford: Oxford University Press.

Granger, C.W.J. and N. Hyung (1999), Occasional breaks and long memory, Discussion paper 99-14, University of California, San Diego.

Granger, C.W.J. and R. Joyeux (1980), An introduction to long-range time series models and fractional differencing, Journal of Time Series Analysis 1, 15-30.

Granger, C.W.J. and T. TerGasvirta (1999), A simple nonlinear time series model with misleading linear properties, Economics Letters 62, 161-165.

Hamilton, J.D. (1989), A new approach to the economic analysis of nonstationary time series subject to changes in regime, Econometrica 57, 357-384.

Hansen, B.E. (1996), Inference when a nuisance parameter is not identified under the null hypothesis, Econometrica 64, 413-430.

Hassler, U. and J. Wolters (1995), Long memory in inflation rates: international evidence, Journal of Business and Economic Statistics 13, 37-45.

Hosking, J.R.M. (1981), Fractional differencing, Biometrika 68, 165-176.

Ljung, G.M. and G.E.P. Box (1978), On a measure of lack of fit in time series models, Biometrika, Vol. 65, pp. 297-303.

Luukkonen, R., P. Saikkonen and T. Terasvirta (1988), Testing linearity against smooth transition autoregressive models, Biometrika 75, 491-499.

Koop, G. and S.M. Potter (2000), Nonlinearity, structural breaks or outliers in economic time series? In: Barnett, W.A., Hendry, D.F., Hylleberg, S., TerGasvirta, T., TjHstheim, D., WGurtz, A.H. (Eds.), Nonlinear Econometric Modeling in Time Series Analysis, Cambridge University Press, Cambridge, pp. 61-78.

Koop, G., M.H. Pesaran and S.M. Potter (1996), Impulse response analysis in nonlinear multivariate models, Journal of Econometrics 74, 119.147.

Koustas, Z. and W. Veloce (1996), Unemployment hysteresis in Canada: an approach based on long-memory time series models, Applied Economics 28, 823-831.

Kwiatowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992), Testing the null hypothesis of stationarity against the alternative of a nit root: how sure are we that economic time series are nonstationary?, Journal of Econometrics 101, 211-228.

Lundbergh, S., T. TerGasvirta, and D. van Dijk (2003), Time-varying smooth transition autoregressive models, Journal of Business and Economic Statistics 21, 104-121.

MacKinnon, J. (1991), Critical values for cointegration tests, In R. F. Engle & C. W. J. Granger (Eds.), Long-run economic relationships, Oxford: Oxford University Press.

Obstfeld, M. and K. Rogoff (2000), The six major puzzles in international macroeconomics: is there a common cause. In: Bernanke, B., Rogoff, K. (Eds.), National Bureau of Economic Research Macroeconomics Annual 2000, NBER and MIT Press, Cambridge, MA.

Potscher, B.M. and I.V. Prucha (1997), Dynamic Nonlinear Econometric Models: Asymptotic Theory, Berlin: Springer-Verlag.

Saikkonen, P. and R. Luukkonen (1997), Testing cointegration in infinite order vector autoregressive processes, Journal of Econometrics 81, 93–126.

Stinchcombe, M.B. and H. White (1998), Consistent specification testing with nuisance parameters present only under the alternative, Econometric Theory 14, 295-325.

Strahilov, K. (2002), The dynamics of wages and relative prices in Estonia: does the Balassa-Samuelson effect held?, mimeo, European University Institute, Florence.

Terasvirta, T. (1994), Specification, estimation, and evaluation of smooth transition autoregressive models, Journal of the American Statistical Association 89, 208-218.

TerGasvirta, T. (1998), Modelling economic relationships with smooth transition regressions. In: A. Ullah, D.E.A. Giles (Ed.), Handbook of Applied Economic Statistics. Marcel Dekker, New York, pp. 507-552.

Tschernig, R. and K.F. Zimmermann (1992), Illusive persistence in German unemployment, Recherches Economiques de Louvain 58, 441.453.

Tong, H. (1990), Non-Linear Time Series: A Dynamical Systems Approach, Oxford: Oxford University Press.

Wooldridge, J.M. (1990), A unified approach to robust, regression-based specification tests, Econometric Theory 6, 17-43.

Wooldridge, J.M. (1991), On the application of robust, regression-based diagnostics to models of conditional means and conditional variances, Journal of Econometrics 47, 5-46.

Wooldridge, J.M. (1994), Estimation and inference for dependent processes, in R.F. 
Table 1: Preliminary data analysis
	Countries
	Germany
	France
	Italy
	UK
	Japan
	Swiss

	Panel A: Summary Statistics

	Mean
	0.5490
	1.7465
	7.4135
	-0.4217
	4.9324
	0.4609

	Skewness
	0.9847
	1.0845
	0.3197
	0.4501
	0.1213
	0.4093

	Kurtosis
	3.5862
	3.7765
	2.9366
	3.6596
	2.1078
	2.8995

	Q(10)
	2302.55
	2263.19
	2223.88
	2383.72
	2767.99
	2565.26

	Q2(10)
	2315.89
	2284.66
	2228.54
	2197.50
	2768.20
	2558.31

	JB
	50.66
	63.69
	4.95
	17.38
	11.93
	9.49

	Panel B: Unit Root Tests
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Note: The full Sample is 288 monthly observations from 1975:1 to 1998.12 for Germany, France, and Italy and 335 monthly observations from 1975:1 to 2002.11 for UK, Japan, and Switzerland. The real exchange rates are calculated from the consumer price, which is seasonally adjusted. In panel (a), Q(10) and Q2(10) are the Ljung-Box statistics for tenth-order serial correlation in the residuals and squared residuals, respectively. The critical values at the 0.05 significance level is 18.31 for 10 degrees of freedom. The standard errors for skewness and kurtosis are (6/T)0.5 =0.162 and (24/T)0.5 =0.324, respectively for GER, FRN and ITA (0.147 and 0.295 for the other countries), where T is the number of observations. In Panel (b), statistics are augmented Dickey-Fuller test statistics for the null hypothesis of a unit root process; the 
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superscript indicates that a constant (a constant and a linear trend) was (were) included in the augmented Dickey-Fuller regression. The critical value at the five percent level of significance is -1.95 to two decimal places if neither a constant nor a time trend is included in the regression, -2.86 if a constant only is included, and -3.41 if both a constant and a linear trend are included (Fuller, 1976; MacKinnon, 1991).

Table 2: Tests for order of integration of different countries’ real exchange rates

	Country
	H0: I(1)
	
	H0: I(0)
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	Germany
	-2.271
	-2.304
	
	0.565
	0.582

	France
	-2.343
	-2.229
	
	0.496
	0.497

	Italy
	-2.350
	-2.441
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 are the augmented Dickey-Fuller (ADF) t-statistics of the lagged dependent variable in a regression with intercept only, and intercept and time trend included, respectively. The critical value at the five and one percent level of significance is -2.86 and -3.43 if a constant only is included, and -3.41 and -3.96 if both a constant and a linear trend are included, respectively. 
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Table 3: Results of the GPH Test for Cointegration

	
	
	Germany
	France
	Italy
	UK
	Japan
	Switzerland
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Note: The sample size for the GPH test is given by n=T(. There exist two alternatives; One is that the hypothesis H0: d=1 is tested against the one-sided alternative of d<1. The other one is that the hypothesis H0: d=0 is tested against the two-sided alternative of d(0. Critical values at the 10%, 5% and 1% level are -1.39, -1.84, -2.67 for 
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Table 4: Fractionally Integrated Autoregressive Models: Equation (1) 

	Countries
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	ITA
	UK
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	Parameter estimates
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	Residual diagnostics
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Note: The table presents parameter estimates and diagnostic tests for the estimated ARFI model for the level of real exchange rates over the sample period January 1975 – December 1998 for Germany, France and Italy, and over the sample period January 1975 – November 2002 from real exchange rates of UK, Japan, and Switzerland. Standard errors are given in parentheses. 
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 the Jarque-Bera test of normality of the residuals, Q(q) and Q2(q) are the Ljung-Box statistics for tenth-order serial correlation in the residuals and their squared up to and including order q. 
Table 5: LM-type tests for STAR nonlinearity after estimation of Model (1) 
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Note: p-values of F variants of the LM-type tests for STAR nonlinearity of the monthly deviation from PPP. The tests are applied in an ARFI(1) model. The 
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Table 6: Estimated ESTAR Models: Equation (4)

	Countries
	GER
	FRN
	ITA
	UK
	JPN
	SWI

	Parameter estimates
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Note: The table presents parameter estimates and diagnostic tests for the estimated ESTAR model for the first difference with lagged level term over the sample period January 1975 – December 1998 from real exchange rates of Germany, France and Italy, and over the sample period January 1975 – November 2002 from real exchange rates of UK, Japan and Switzerland. The others see the notes to table 4. 
Table 7: Estimated FI-ESTAR Models: Equation (5)
Note: see the notes to table 4.
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	FRN
	ITA
	UK
	JPN
	SWI

	Parameter estimates
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	Residual diagnostics
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Figure 1: Autocorrelation functions for deviations from PPP
Germany, France, and Italy

[image: image268.wmf] Note: The figure plots the lag 1 through 100 sample autocorrelations of real exchange rates, with which the upper and lower 95% Bartlett (1946) confidence bands appear over the sample period January 1975 – December 1998 from real exchange rates of Germany, France and Italy.
UK, Japan, and Swiss

[image: image269.wmf] Note: The figure plots the lag 1 through 100 sample autocorrelations of real exchange rates, with which the upper and lower 95% Bartlett (1946) confidence bands appear over the sample period January 1975 – November 2002 from real exchange rates of UK, Japan and Switzerland.
Figure 2: Transition function for FI-ESTAR Model
Germany                                   France 
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Note: Transition functions in FI-ESTAR model for monthly real exchange rates against the chosen transition variable.
Figure 3: Generalized Impulse response function for FI-ESTAR and ESTAR Models.
Germany
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Note: Mean over all histories in the set 
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(Continued)

UK

[image: image284.wmf][image: image285.wmf]
Japan

[image: image286.wmf][image: image287.wmf]
Switzerland
[image: image288.wmf][image: image289.wmf]
� These three model classes assume the presence of two or more regimes, within which the time series requires different (linear) models for description and forecasting.


� see Koop and Potter (2000) and Lundbergh et al. (2002) for discussions on structural change and nonlinearity and see Bos et al. (1999), Granger and Hyung (1999) and Diebold and Inoue (2001) for their applications to a long memory.


� In the STAR model as discussed in Terasvirta (1994), the transition variable � EMBED Equation.3  ��� is assumed to be a lagged endogenous variable, that is, � EMBED Equation.3  ��� for certain integer d > 0. However, the transition variable can also be any exogenous variable (� EMBED Equation.3  ���), or a possibly nonlinear function of lagged endogenous variables,  � EMBED Equation.3  ��� for some function h. A lagged endogenous variable is simply used in this paper. 


� Another plausible transition function for some applications is the logistic function suggested by Granger and Terasvirta (1993) and Terasvirta (1994), resulting in a logistic STAR or LSTAR model. To model the behavior of real exchange rate, the LSTAR model may not be appropriate because the LSTAR model implies asymmetric behavior of � EMBED Equation.3  ��� according to whether it is above or below the equilibrium level. That is to say, it is not straightforward to think of economic reasons why the speed of adjustment of the real exchange rate should vary according to whether the specific currency is appreciated or depreciated from the equilibrium value.


� This implies that while � EMBED Equation.3  ��� is admissible, one must have� EMBED Equation.3  ��� and� EMBED Equation.3  ���. That is, for small deviations� EMBED Equation.3  ��� may be characterized by unit root or even explosive behavior, but for large deviations the process is mean reverting.


� See subsequent studies from Andrews and Ploberger (1994), Hansen (1996) and Stinchcombe and White (1998) for recent general accounts.


� As usual, the F-version of the test statistic is preferable to the � EMBED Equation.3  ���-version in small samples because its size and power properties are better.


� In case of the STAR model, analytic expressions for the conditional expectations involved in the GIRF are not available for h > 1. Stochastic simulation has to be used to obtain estimates of the impulse response measures. See Koop et al. (1996) for a detailed description of the relevant techniques.


� Moreover, using non-augmented Dickey-Fuller tests or augmented Dickey-Fuller tests with any number of lags in the range from 1 to 20 yielded results qualitatively identical to those reported in Panel (b) of Table 1, also regardless of whether a constant or a deterministic trend was included in the regression.


� Especially, we should be careful to determine whether the real exchange rate is cointegrated or fractionally cointegrated. As shown in Chung (1997), the GPH test for cointegation appears to have slightly better statistical power against autoregressive alternatives than the ADF-t test. However, the PP tests have a more statistical power against autoregressive alternatives, and fractional alternatives than the GPH test when autoregressive parameter (() and d are less than ½, respectively.


� From a linear AR model parameterized in first differences, including a single level term at the first lag, we allow for a maximum lag of 18 first differences. Both AIC and BIC indicate that AR(p) models with 1 lagged first differences are appropriate. From the � EMBED Equation.3  ���-values of the heteroskedasticity robust, linearity can be rejected most strongly when l=6 for GER, l =3 for FRN and ITA, l =6 for UK and l =5 for JPN, and l =4 for SWI. The results for this are not reported here for reasons of spaces.


� For the transition function selection, an ESTAR model is not most appropriate for all candidate transition variables and even according to whether the specification procedures of Terasvirta (1994) or Escribano and Jorda (1999) is used. The results for this are available from authors on request but are not reported here for reasons of spaces.


� Detailed results of these misspecification tests are available on request.
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