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ABSTRACT
We discuss the struggles in out-of-sample (OOS) performance for mean-
variance optimization using historical returns and improve the OOS
performance using a single-factor model. Through this paper, we only
differentiate the first moment (expected return) and keep the same
covariance matrix for both portfolios to simplify comparing the two
models. Using 30 stocks of the Dow Jones Index components from
January 2010 through July 2022, we confirm that historical forecasts
are imprecise guides for future portfolio performance and improve the
performance in two stages. In the first stage, we improve future portfolio
performance by adopting a factor-based model. Given this result, factor-
based portfolio optimization can relieve the estimation errors from
historical expected returns by using factor loadings. In the second stage,
a machine-learning technique called Support Vector Regression (SVR)
is proposed to predict market returns for the next period. By replacing
the historical average market returns with the predicted market returns
in a single-factor model, we further improve the performance of the
factor-based portfolio.

1 INTRODUCTION
Portfolio optimization has always been the center of attention by
investment practitioners and finance academics. Since the introduction
of modern portfolio theory, different models of optimization schemes
have been developed. Most notably, Sharpe ratio maximization in the
mean-variance framework establishes the firm ground for many others
(e.g., maximum diversification and minimum variance). Theoretically,
the mean-variance optimization assumes that individual assets have well-
defined expected returns, return volatility, as well as correlation structure
among them. For example, in continuous-time frameworks, asset return
dynamics are defined with known parameters such as drift and diffusion
volatility. In other words, in spite of a certain extent of uncertainty, the
expected returns of each asset and return covariance across them are
known. Oftentimes, they are time-invariant: at each point in time, the
asset return distribution has a constant mean and variance. Even in more
flexible models with time-varying distributions, the assumption is that
those pieces of information are known in a forward-looking sense.

The application of this theory, however, faces an immediate challenge.
While these two pieces of information (expected return and covariance
matrix) are key inputs for the mean-variance optimization, estimating
them is not straightforward. In practice, many use mean and correlation
of historical return. This practice can be justified only under the
assumption that historical returns predict the future. We already know
this is not true. Although the past returns indicate characteristics of
underlying risks, using them to estimate expected return is subject to a
fatal flaw (Michaud, 1989; Chopra and Ziemba, 1993; Best and Grauer,
2015). We cannot argue that an asset that experienced a steep price
appreciation in the past will continue to enjoy such a pattern in the future.

However, feeding expected return based on the historical pattern to the
mean-variance optimization results overweight on those assets, exposing
the entire portfolio to the long-term momentum. Also, should any asset
in the portfolio be associated with an extremely high or low historical
return, the optimization often shows a corner solution: the allocation is
entirely concentrated on this particular asset. In this case, this wrong
estimation can defeat the purpose of portfolio optimization designed to
maximize the diversification benefit.

In this document, we discuss an approach to overcome this problem. In
addition to addressing this challenge, our approach is designed to achieve
the following goal: it must be applicable to general equity securities
without requiring any firm- and market-specific information that would
limit the scope of the application. Therefore, the merit of our approach
is that a portfolio of a broader set of equities can be optimized. One can
imagine its immediate benefit in the context of direct indexing, a recent
financial innovation that each investor can create a customized index with
his/ her own choices of assets and a tailor-made optimization objective.
For instance, an institutional investor mandated to make ESG investments
would want to achieve the highest attainable Sharpe ratio for chosen
ESG-related stocks. Another example is an application for a retail client
who wishes to conduct tax harvesting on an individual portfolio. As every
individual holds different portfolios, our forward-looking optimization
scheme with a large asset coverage would be a good candidate.

This paper is closely related to studies that propose robust portfolio
optimization using forward-looking information. Several papers use
forward-looking information, such as implied volatility extracted from
option data, for the portfolio covariance matrix (Kostakis et al., 2011;
Kempf et al., 2014; Bianchi and Tassinari, 2020). In alignment with
the literature, we use well-known predictors to predict market returns.
However, we differentiate from prior literature in that we apply the
predicted market returns in the single-factor model to predict the future
expected returns of individual stocks.

Moreover, this research has a relationship with the topics of the factor
model and the machine-learning to improve the optimization process.
Many prior studies focus on finding the latent factors from abundant data
and comparing prediction power between the well-known factor and the
factors constructed by machine learning techniques (Feng et al., 2018; Gu
et al., 2021). However, our approach differs from the existing literature.
We use a machine learning method to predict factor returns, such as
market returns, and then use this factor return directly in the factor model.

Lastly, this paper is related to a hybrid investment portfolio strategy.
Much literature focuses on the hybrid strategy by setting multiple
objective optimization processes (Roman et al., 2007; Chen and Wang,
2015). Similar to these studies, we combine a minimum variance
optimization and a maximizing Sharpe ratio optimization in the factor-
based model for two reasons. One is the technical reason that, for a
single-factor model, if market returns are negative and all the betas of
individual stocks are positive, all of the expected returns of individual
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stocks are negative. In this case, the quadratic problem should not be
solved; therefore, an alternative optimization process, such as minimum-
variance optimization, is employed instead. The other reason is the
justification (implication) of this combining strategy in that when the
expected returns of individual stocks are predicted to be negative,
investors should implement the minimum-variance strategy instead of the
maximizing Shape ratio strategy to avoid risks. This trading strategy is
similar to the Chen and Wang (2015) in that maximizing the Sharpe ratio
portfolio performs the best in a bull market, while the minimum-variance
portfolio performs the best in a bear market.

The summary of our findings is as follows. Firstly, we find that
the portfolio optimized with a single-factor model is more diversified
than the portfolio with a historical model. Remarkably, the single-
factor model shows a higher diversification ratio and lower concentration
(Herfindahl–Hirschman index) than the historical model. Next, the
single-factor model shows the highest Sharpe ratio and the lowest
maximum drawdown, while the historical model shows the worst. Given
that the historical expected returns are exposed to the estimation errors
such as noises and biases, factor-based portfolio optimization can relieve
these errors and perform better. Lastly, we further improve a single
factor-based portfolio reflecting forward-looking signals. We use high-
frequency market signals that are well-known to predict negative market
returns. Then, we adopt the machine learning technique to reflect market
predictors and estimate expected market returns with this technique. By
doing so, we show that the optimization results using machine learning
outperform the previous ones.

The remainder of this paper is organized as follows. Section 2
describes the mean and variance estimation process using historical
returns and a single-factor model. Section 3 explains the optimization
process and defines the performance measures. Section 4 compares the
performance between the factor-based model and the historical model.
Section 5 shows the further improved performance adopting the machine
learning technique, and Section 6 concludes.

2 FACTOR MODEL
We use the following notation throughout this paper:

• rf,t: return for risk-free asset at date t.

• ri,t: return for asset i at date t, stacked into rt := (r1,t, ..., rN,t)
′
.

• rei,t: excess return for asset i over risk-free return (rf,t) at date t,
stacked into ret := (re1,t, ..., r

e
N,t)

′
.

• αi: abnormal return for asset i, unexplained by factor model.

• fk,t: return for factor k at date t, stacked into ft := (f1,t, ..., fK,t)
′
.

• εi,t: error term for asset i at date t, stacked into εi,t :=

(ε1,t, ..., εK,t)
′
.

• Σt:= covariance matrix estimation of returns for asset i and asset j
at time t, where i = 1, ..., N and j = 1, ..., N . Its elements are
composed of N variances, and N(N − 1) covariances.

We adopt an unconditional static factor model. For every asset i =
1, ..., N and factor k = 1, ...,K,

rei,t = αi + β
′
ift + εi,t, (1)

with βi := (βi,1, ...β
′
i,K) and E(εi,t|ft) = 0.

Among factor models, we adopt the single-factor model. Therefore,
Equation (1) can be simplified as follows:

rei,t = αi + βi,m(rm,t − rf,t) + εi,t, (2)

where rm,t is the market returns and βi,m is the market beta. Using
Equation (2), we estimate the alpha and the market beta with a lookback
window of 252 business days.

2.1 Factor-based expected returns
We calculate the model-based returns with the estimated beta. We only
keep the explained terms by the factor (market) model and exclude the
unexplained alpha. Furthermore, the error term also is excluded because
this noise term should be technically averaged out when we calculate the
expected returns. Therefore, the excess return of the factor-based model
is calculated as follows:

rModel,e
i,t = β̂

′
ift, (3)

Then, we include the risk-free rate to generate the factor-based return.

rModel
i,t = rf,t + β̂

′
ift, (4)

Finally, we calculate the model-based expected return using factor-
based returns for the prior 126 business days:

µModel
i,t =

1

126

125∑
τ=0

rModel
i,t−τ . (5)

Since we adopt the single-factor model, Equations (4) and (5) can be
written:

rfactori,t = rf,t + rfactor,ei,t , (6)

and

µfactor
i,t =

1

126

125∑
τ=0

rfactori,t−τ . (7)

2.2 Historical expected returns and covariance
The historical expected return is the average of individual asset returns
for the prior 126 business days:

µHist
i,t =

1

126

125∑
τ=0

rHist
i,t−τ . (8)

Furthermore, we estimate the covariance matrix using individual asset
returns for the prior 126 business days:

σHist
ij,t =

1

125

125∑
τ=0

(rHist
i,t−τ − µHist

i,t )(rHist
j,t−τ − µHist

j,t ). (9)

3 OPTIMIZATION AND PERFORMANCE MEASURES
3.1 Optimization
Among various mean-variance optimization methods, we adopt the
maximizing Sharpe ratio optimization with short sales constraints, which
is given by,

max
w

SR =
µ

′
w

(w′Σw)1/2

s.t. e
′
w = 1

w ≥ 0,

(10)

where µ ∈ RN is a vector of expected returns for N different assets,
w ∈ RN is a vector of weights for N different assets, and Σ ∈ SN

+

denotes the corresponding covariance matrix. The sum of weights for
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assets is equal to 1 (e
′
w = 1) and a short sale is constrained (w ≥ 0) to

reduce the estimation error (Jagannathan and Ma, 2003; Garlappi et al.,
2006).1

Moreover, we consider additional mean-variance optimization models
for benchmarks: the minimizing variance optimization (Global Minimum
Variance Portfolio; GMVP) and the maximizing diversification ratio
optimization.

The minimizing variance optimization is given by,

min
w

w
′
Σw

1/2

s.t. e
′
w = 1

w ≥ 0,

(11)

where (w
′
Σw)1/2 is the portfolio’s standard deviation, and constraints

are the same with Equation (10).
The maximizing diversification ratio optimization is given by,

max
w

DR =
w

′
diag(σ1, ..., σN )

(w′Σw)1/2

s.t. e
′
w = 1

w ≥ 0,

(12)

where w
′
diag(σ1, ..., σN ) is the linear combination of the weight of

the asset and its standard deviation, implying the portfolio’s standard
deviation without considering the diversification effect. On the other
hand, (w

′
Σw)1/2 is the portfolio’s standard deviation reflecting the

diversification effect. Therefore, the well-diversified portfolio should
have a high value of DR because the denominator is much smaller than
the numerator. Constraints are the same with Equation (10).

3.2 Performance Measures
We use several measures to compare the performance between the
optimized portfolio with the historical expected returns and the factor-
based expected returns. The portfolio performance measures, in general,
can be classified into two categories: measures for diversification effect
and financial performance. Among many alternatives for diversification,
we select the Herfindahl–Hirschman Index (HHI) and the diversification
ratio. These diversification measures are in-sample measures because
the weights of the stocks in the portfolio, the result of mean-
variance optimization with in-sample, calculate these measures. On the
other hand, using ex-post portfolio returns, we measure the financial
performance through the maximum drawdown (risk) and the Sharpe ratio
(reward-to-risk).

We measure the degree of concentration (HHI), which is in line with
Chamberlain (1983) and Green and Hollifield (1992) in that portfolio
diversification is identified by the sum of squared weights, or l2-norm.
This measure converges to zero as the number of assets (N) increases to
infinity. For stock i, HHI is measured as follows:

HHI =

N∑
i=1

w2
i , (13)

where wi is the weight of stock i. HHI has a value between 0 and 1,
and the high value implies a high degree of concentration. Particularly,
HHI = 1 implies the extreme corner solution, where the portfolio is
only composed of a single asset.

Then, we calculate the diversification ratio (DR) to measure the
diversified effect.

1 Note that we exclude the risk-free rate from the Sharpe ratio calculation.

DR =
w

′
diag(Σ)

(w′Σw)1/2
, (14)

where diag(Σ) is the diagonal terms of the covariance matrix
(σ1, ..., σN ). w

′
diag(Σ) means the linear combination of the portfolio

standard deviation, implying that all assets are perfectly positively
correlated (ρ = 1). On the other hand, (w

′
Σw)1/2 is the portfolio

standard deviation reflecting the diversification effect. Therefore, as the
diversification ratio is high, we expect the portfolio is well-diversified.

Next, we compute the maximum 1-year drawdown as the worst 252-
day return in the sample to measure the maximum fall in the value of the
investment following Grossman and Zhou (1993).

MDD = −min(r252d). (15)

where MDD is the maximum drawdown and r252d is the cumulative
return over the preceding 252 days.

Lastly, we measure the Sharpe ratio to compare the performance with
respect to the risk-return context, neglecting the risk-free rate, written as
follows:

SR =
µ

′
w

(w′Σw)1/2
. (16)

4 EMPIRICAL RESULTS
In this section, we compare the performance of the mean-variance
portfolio using a single factor against several benchmarks. Throughout
this paper, we use the Dow Jones Index (DJI) as a market index. In other
words, we use DJI return as market return. Since the DJI comprises thirty
firms, our portfolio is constructed with 30 securities.

The portfolio optimization is processed with four steps. First, we
select 30 stocks from the CRSP, following the component list of the
DJI. Second, given a 30-asset universe, we estimate the covariance
matrix from the historical return data following Equation (9). Third, we
separately calculate a set of expected returns for a single-factor model and
historical model following Equations (5) and (8). Fourth, we solve the
mean-variance portfolio problem using two models following Equation
(10).

One thing to notice is that our maximizing Sharpe ratio optimization
strategy is composed of two strategies: the maximizing Sharpe ratio
optimization and the minimum variance optimization instead. For
instance, if the solution for maximizing Sharpe ratio optimization cannot
find any solution, we adopt the minimum variance optimization. One of
the cases is when the market returns have been predicted to be negative.
If so, since usual stocks have a positive market beta, all individual stocks
will have negative expected returns (See Equation (3)). Since there is
no solution to maximize the Sharpe ratio in this case, we minimize the
variance of the portfolio instead. This strategy implies that when the
expected returns of individual stocks in the future are all predicted to
have negative values, it is appropriate to use a strategy that minimizes
risk rather than the maximizing Sharpe Ratio.

Turning to the details, we implement the optimization at the end of the
month from January 2009 through July 2022; therefore, there are 150
optimization dates during our sample period. Our computations are done
on a rolling-horizon basis. Taking an optimization process as an example,
for optimization on January 31 in 2010, we use the prior 126 business
days (from August 1 in 2009 to January 31 in 2010) to estimate the
historical expected returns and the historical covariance matrix following
Equations (8) and (9). Then, we use the prior 252 business days to
estimate the betas using Equation (2) and the prior 126 business days
to estimate the factor-based expected returns following Equation (7).
All computations were carried out in Python with the solver MOSEK,
a package for specifying and solving convex problems.
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We compare the result of the Sharpe ratio optimization between
historical expected returns and factor-based expected returns. Since our
goal is to compare the impact of the first moment (mean) between
the factor-based model and the historical model, we use the second
moment (covariance matrix) at the same for both optimization cases. For
instance, we set µHist′w as a numerator in Equation (10) for historical
expected returns and µfactor′w for single-factor-based expected returns.
In contrast, the covariance matrix measured by historical returns is set as
a numerator in both cases.

4.1 Diversification Performance: In-Sample Statistics
In this section, we compare the results for the historical expected returns
with the factor-based expected returns.

Table 1 reports the optimized results of HHI and DR using historical
expected returns and single-factor-based expected returns. Compared to
the historical model (SRHist), the single-factor model (SRF1) presents
a low average value of HHI (0.10 vs. 0.33) and a high average value
of DR (1.59 vs. 1.44). These results imply that the optimized weight is
more diversified in the factor model than in the historical model. One
argument is that rather than the historical average return, the expected
return estimated under CAPM’s assumption shows more diversification.
This means that optimization using historical returns could be failed due
to estimation bias (e.g., momentum effect) or noises. In other words, the
noise and bias from the historical average return can be much larger than
the estimation error of market beta.

As a benchmark, we also present the results of minimizing variance
optimization (MinVar) and maximizing diversification ratio optimization
(MaxDR). Since the objective of these two benchmarks is to maximize
the diversification effect, we observe that HHI (DR) of these two
models is lower (higher) than that of the single-factor model in Table
1.

[Insert Table 1 here.]

4.2 Financial Performance: Out-of-Sample Statistics
In this section, we evaluate a portfolio’s ex-post performance with respect
to the benchmark. Using the optimized portfolio weight, we generate the
one-month holding portfolios, which are rebalanced at the end of each
month. Using ex-post portfolio returns, we calculate MDD and OOS
SR measures following Equations (15) and (16). At first, we find that the
order of OOS SR in Table 2 and in-sample SR in Table 1 are opposite.
Notably, the in-sample SR of the factor-based model is approximately
one-third of that of the historical model (1.301 vs. 3.652). However, the
OOS SR of the factor-based model is higher than that of the historical
model (1.243 vs. 1.143).

Moreover, we find that the result of the DJI is the worst. Among the
results, DJI records the largest maximum drawdown (in Panel (b)) and
lowest Sharper ratio (in Panel (c)). Since the optimized weight is more
diversified for the single-factor model, we anticipate that the ex-post
portfolio performance of the single-factor model will show low riskiness
and a high Sharpe ratio. As expected, Table 2 shows that the portfolio
based on the factor model has a low average MDD (3.4% vs. 3.6%) and
a high average SR (1.21 vs. 1.12).

As a benchmark, we additionally present the results of minimizing
variance optimization (MinVar), maximizing diversification (MaxDR)
ratio optimization, and DJI. We observe the result of MinVar, as known
as the Global Minimum Variance Portfolio (GMVP), shows better results
than SRHist. This is consistent with Jorion (1985) that it is better to use
GMVP than to use historical average return. In addition, we find evidence
that the factor-based model improves the GMVP one step further. In
Table 2, we find that SRF1 performs better (lower MDD and higher
SR) than MinVar.

[Insert Table 2 here.]

5 FACTOR SIGNALS
In this section, we explain signals well-known for predicting factor
returns and how to reflect these signals into the factor-based expected
returns.

5.1 Support Vector Regression for Building a Factor
Return Prediction Model

Among the various machine learning algorithms, we select the Support
Vector Regression (SVR) algorithm, as proposed by Cortes and Vapnik
(1995), to predict market returns because of three reasons. First, SVR
is the supervised machine learning model, where the machine learning
operates based on example input-output pairs. Therefore, we expect to
find the best combination of signals to predict market returns. Second,
SVR is built based on the concept of the Support Vector Machine
(SVM), where the relationship between predictive signals and outcome
factor returns is not necessary to be set as a linear relationship. If
{(x1, y1), (x2, y2), ..., (xt, yt)}, where xt ∈ X ⊂ R, yt ∈ Y ⊂
R, t = 1, ..., T are the training data and T is the total number of training
samples, the SVR function can be specified as

f(x) = a
′
ϕ(x) + b, (17)

where ϕ(x) is the nonlinear kernel function that maps the input data
vector x into a feature space y. Specifically, we use the Gaussian radial
basis (RBF) kernel (a set of mathematical functions that takes data as
input and transforms it into the required form) to allow non-linearity. In
order to obtain a and b, the following regularized risk function must be
minimized:

minR(f) = C
1

T

T∑
t=1

Lε(yt, f(xt)) +
1

2
||a||2

s.t. |yt − f(xt)| ≤ ε

ε ≥ 0,

(18)

where Lε =

{
0 if |yt − f(xt)| < ε

|yt − f(xt)| − ε otherwise.

C is the regularization parameter and ε specifies the epsilon-tube
within which no penalty is associated in the training loss function with
points predicted within a distance epsilon from the actual value. We set
C equal to 1 and ε equal to 0.1 for the SVR model. yt is the actual value
at time t, f(xt) is the predicted value at the same period, and Lε is
ε-sensitive loss function, which identifies the predicted values within a
distance epsilon from the actual value yt.

Last but not least, SVR is unlikely to occur overfitting problems since
the solution SVR may be global optimum while other neural network
models may fall into a local optimal solution Kim (2003).

5.2 Exploiting Predictive Signals in Factor-based
Optimization

From the large number of predictors introduced in the prior literature,
we select 20 signals from the market and macro information. Since
we consider the single-factor model, all of the signals are predictive
measures for future market returns, especially downside market crashes.
The list of selected signals is described in Table 3 with references.

[Insert Table 3 here.]
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Using predictive signals, we predict the market returns using the
SVR algorithm. The usual data sampling method in machine learning
is to randomly split entire samples into training data (in-sample) and
test data (OOS) without considering time order. Instead, our training
sample is a very specific sample, which preserves the order of realized
observations. Our training sample increases over time because we predict
market returns by accumulating signals from January 2000 to the date of
estimation. Therefore, these are essential distinctions from other possible
sampling methods to closely meet investors’ interests.

We then put the predicted market returns to calculate the expected
returns of individual stocks. as follows:

µfactor,ML
i,t+1 = rf,t + β̂ir̂m,t+1, (19)

where r̂m,t+1 is the future market returns at time t+ 1 predicted at time
t.

Therefore, the difference between the corresponding section is that we
predict the expected return of individual stocks by estimating not only the
beta but also the market rate return, while the previous section predicts
the expected return of individual stocks using the estimated beta and
historical market return.

5.3 Performance Comparison
In this section, we compare the portfolio performance within factor-based
models. In Table 1, SRML refers to a single-factor model with predicted
market returns via the SVR algorithm. In this table, we cannot see the
big difference between SRML and SRF1 models with respect to the
diversification aspect. Furthermore, in-sample Sharpe ratio of SRF1 is
23% higher than that of SRML (1.301 vs. 1.058). However, when we
see the ex-post statistics in Table 2, the results are exactly the opposite.
In panel (a), the mean of SRML is higher, and the standard deviation
of SRML is lower than the counterpart of SRF1. Therefore, we observe
that the ex-post Sharpe ratio of SRML is 13% higher than that of SRF1.
Furthermore, the MDD of SRML is lower than the MDD of SRF1.
These results imply that the machine learning algorithms provide better
guidance to investors from an asset allocation perspective.

6 CONCLUSION
We devise a method using a factor-based model to improve the mean-
variance optimization model’s poor performance. In addition, we point
out the problem of using historical returns (low OOS performance) and
suggest a factor-based model approach to address this problem.

This study uses the single-factor model, the basic model among factor
models, and shows that the performance is improved by applying two
methods. First, since the average historical returns have estimation errors,
we minimize this error by estimating the expected returns of individual
stocks using market beta estimated by a single-factor model. At this time,
the alpha that the factor model does not explain is excluded from the
expected return. Second, we re-estimate expected returns using estimated
expected market returns via the machine-learning algorithm as well as
beta.

The portfolio, constructed in this way, shows better performance in
OOS than the historical model (MaxHist) and other benchmarks (DJI,
MinVar, or MaxDr) with a small maximum drawdown and a large Sharpe
ratio.

Therefore, one of our contributions is finding a new approach to apply
machine learning algorithms to the portfolio optimization process. In
addition, this study is meaningful in finding other empirical evidence of
the problems with estimating the future return from historical return.

Future research can be expanded in two aspects. In the first aspect,
we will verify that the results are consistent by looking at various asset

classes. For example, we expand our samples with the S&P 500 or verify
them with assets in other countries. In the second aspect, we will use the
multi-factor model to examine whether the portfolio’s performance can
improve further. For example, since it is well-known that the multi-factor
model, such as the Fama-French 5-factor model, can better predict stock
returns than the single-factor model, we will test whether it performs
better. Lastly, we can use a multi-factor model to predict factor returns
such as SMB or HML by reflecting firm-specific information to the
machine learning algorithm. Since the information set for a market return
prediction in a single-factor model is constrained to market and macro
variables, as illustrated in Table 3, we can expand our information set for
predicting other factor returns, leading to better performance.
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Table 1: In-Sample Statistics

This table shows the in-sample statistics of each portfolio. Panel (a) shows the
in-sample Sharpe ratio as defined in Equation (16), Panel (b) shows the
concentration measure, Herfindahl-Hirschman Index, as defined in Equation (13),
and Panel (c) shows a diversification ratio, as defined in Equation (14). On the
other hand, column names indicate the optimization model. SRHist (SRF1) refers
to Sharpe ratio maximization using the historical model (factor-based model).
SRML refers to Sharpe ratio maximization using the factor-based model, where
the market returns are predicted by a machine-learning algorithm called the
Support Vector Regression (SVR). MinVar refers to the minimum-variance
optimization, and MaxDR refers to the maximum-diversification ratio
optimization.

SRHist SRF1 SRML MinVar MaxDR

count 150 150 150 150 150
mean 3.652 1.301 1.058 1.526 1.352
std 1.378 1.197 1.909 1.326 1.386
min 0.936 -1.248 -8.259 -1.606 -1.716
25% 2.602 0.382 0.522 0.637 0.347
50% 3.688 1.224 1.502 1.434 1.361
75% 4.320 2.215 2.217 2.281 2.203
max 7.647 4.145 4.218 5.062 4.767

(a) In-Sample Sharpe Ratio

SRHist SRF1 SRML MinVar MaxDR

count 150 150 150 150 150
mean 0.333 0.147 0.143 0.199 0.120
std 0.196 0.100 0.085 0.119 0.047
min 0.094 0.066 0.061 0.076 0.061
25% 0.202 0.099 0.096 0.131 0.096
50% 0.276 0.113 0.117 0.160 0.108
75% 0.370 0.152 0.158 0.229 0.130
max 1.000 0.769 0.660 0.728 0.348

(b) Herfindahl–Hirschman Index

SRHist SRF1 SRML MinVar MaxDR

count 150 150 150 150 150
mean 1.443 1.589 1.591 1.639 1.867
std 0.283 0.288 0.298 0.335 0.342
min 1.000 1.066 1.088 1.064 1.269
25% 1.266 1.385 1.376 1.429 1.662
50% 1.415 1.574 1.582 1.609 1.849
75% 1.595 1.758 1.735 1.822 2.031
max 2.376 2.425 2.654 2.698 2.967

(c) Diversification Ratio

Table 2: Out-of-Sample Statistics

This table shows the out-of-sample (OOS) statistics of each portfolio. Panel (a)
shows the statistics of ex-post portfolio returns, Panel (b) shows the maximum
drawdown, as defined in Equation (15), and Panel (c) shows a OOS Sharpe ratio,
as defined in Equation (16). On the other hand, column names indicate the
optimization model. SRHist (SRF1) refers to Sharpe ratio maximization using the
historical model (factor-based model). SRML refers to Sharpe ratio maximization
using the factor-based model, where the market returns are predicted by a
machine-learning algorithm called the Support Vector Regression (SVR). MinVar
refers to the minimum-variance optimization, MaxDR refers to the
maximum-diversification ratio optimization, and DJI refers to the Dow Jones
Index.

SRHist SRF1 SRML MinVar MaxDR DJI

count 3,146 3,146 3,146 3,146 3,146 3,146
mean 0.066 0.055 0.067 0.042 0.049 0.043
std 1.182 1.013 0.997 0.824 0.995 1.082
min -10.961 -8.756 -7.643 -7.643 -9.173 -12.927
25% -0.461 -0.370 -0.356 -0.332 -0.387 -0.369
50% 0.092 0.087 0.090 0.063 0.075 0.060
75% 0.622 0.554 0.556 0.449 0.529 0.534
max 10.773 7.291 8.681 7.312 8.665 11.365

(a) Ex-Post Returns

SRHist SRF1 SRML MinVar MaxDR DJI

count 2,896 2,896 2,896 2,896 2,896 2,896
mean 0.035 0.032 0.027 0.026 0.034 0.037
std 0.036 0.036 0.033 0.028 0.039 0.046
min 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.006 0.004 0.003 0.004 0.004 0.005
50% 0.024 0.020 0.015 0.016 0.020 0.021
75% 0.055 0.050 0.039 0.039 0.051 0.053
max 0.285 0.278 0.209 0.191 0.294 0.371

(b) Maximum Drawdown

SRHist SRF1 SRML MinVar MaxDR DJI

count 3,021 3,021 3,021 3,021 3,021 3,021
mean 1.143 1.243 1.402 1.145 1.186 1.066
std 1.024 1.206 1.170 1.151 1.214 1.085
min -1.376 -1.816 -1.820 -2.072 -2.378 -1.929
25% 0.528 0.303 0.651 0.275 0.428 0.290
50% 1.103 1.263 1.375 1.054 1.030 1.123
75% 1.612 1.831 2.021 1.764 1.735 1.882
max 5.929 5.916 5.844 5.443 6.119 4.446

(c) OOS Sharpe Ratio
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Table 3: List of Signals for Market Crash

Num Category Paper Variable Object
1 Market Lleo and Ziemba (2012) BSEYD BSEYD (Bond Stock Earning Yield Differential) is the spread between bond yields and stock

yields. Bond Yield uses the T-Bond 10 YR Constant (DGS10), Stock Yield uses the reciprocal
of CAPE10 (1/CAPE10), and CAPE10 is the PE Ratio created by Shiller, which is adjusted for
inflation with the current index (P) as CPI. It is calculated by dividing by the average earnings over
10 years (E10).

2 Market Lleo and Ziemba (2012) Ln(BSEYD) The logarithm of the BSEYD.
3 Market Nyberg (2013) ∆D/P The first difference value of the dividend-price ratio (dividend yield) of the market (S&P 500)

index.
4 Market Nyberg (2013) ∆E/P The first difference value of the earning-price ratio of the market (S&P 500) index.
5 Market Kole and van Dijk (2017) πMS Transition probability to bear market using the Markov switching model, where a bear market is

defined as the market under a high volatility regime. Since the status we are interested in is whether
that market is under bear market at time t, this value is the sum of the probability that the phase
transitions from bull to bear and the probability that the phase remains bear from bear.

6 Market Chen and Vincent (2016) MOM 12-month momentum of the market (S&P 500) index.
7 Market Chen and Vincent (2016) MOM MA Moving average of market momentum. This variable measures the momentum of the current index

relative to the average market index.
8 Market Baker and Wurgler (2006) CEFD Closed-end fund discount (Sentiment Components).
9 Market Baker and Wurgler (2006) NIPO Number of IPO. IPO volume. (Sentiment Components)
10 Market Baker and Wurgler (2006) RIPO First-day returns on IPO (Sentiment Components).
11 Market Baker and Wurgler (2006) PDND Price of dividend stock to non-dividend stock (Sentiment Components). This measure is the value-

weighted dividend premium following Baker and Wurgler (2004).
12 Market Baker and Wurgler (2006) EQIS Equity issuance ratio (Sentiment Components). The total volume of equity issues over the prior

twelve months divided by the total volume of equity and debt issues over the prior twelve months.
13 Market Baker and Wurgler (2006) SENT Investor Sentiment. It is a sentiment index in Baker and Wurgler (2006) based on first principal

component of five (CEFD, NIPO, RIPO, PDND, EQIS) standardized sentiment proxies.
14 Market Baker and Wurgler (2006) SENT ORTH Investor Sentiment (Orthogonalized). It is orthogonalized SENT with respect to a set of six

macroeconomic indicators (industrial production index, nominal durables consumption, nominal
nondurable consumption, nominal services consumption, NBER recession indicator, employment,
and CPI)

15 Macro Nyberg (2013) ∆CPI Rate of change of CPI (consumer price index for all urban consumer: all Items in U.S. city average;
CPIAUCSL), or inflation rate.

16 Macro Nyberg (2013) ∆INDPRO Rate of change of the industrial production index.
17 Macro Nyberg (2013) ∆UNRATE Rate of change of of the empoloyment rate.
18 Macro Nyberg (2013) TS Term spread is the difference between short-term and long-term interest rates, where the 3-Month

Treasury Bill and the 10-Year Government Bond ared used for each interest rate.
19 Macro Zouaoui et al. (2011) CCI ORTH Orthogonalized Consumer Confidenc Index (OCCI). The Consumer Confidence Index, which is a

collection of data from direct consumer surveys conducted by Michigan University every month,
is used as the direct investment sentiment. The stronger the investment sentiment, the higher
the market crash is expected. We use CCI, the consumption sentiment of individual investors,
as a direct proxy for predicting market crash. However, since CCI information includes not only
behavioral factors (such as market beliefs) that affect individual investors, but also Macroeconomic
factors, Macroeconomic factors are removed. Therefore, OCCI is the residual of the regression
analysis that is not explained by Macroeconomic variables. The term spread (difference between
10-year US Treasury bonds and 3-month US Treasury bonds), the private credit growth rate, the
industrial production index growth rate, and the consumption growth rate of durable goods/non-
durable goods/services are used as Macroeconomic variables.

20 Macro Zouaoui et al. (2011) ∆CREDIT U.S. Gross Domestic Credit (% GDP). It is provided quarterly and is calculated as the first
difference of the quarterly data.
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This figure shows the ex-post performance of each portfolio from January 2010
to June 2022. For brevity, we plot four models out of six. SRHist (SRF1) refers to
Sharpe ratio maximization using the historical model (factor-based model).
SRML refers to Sharpe ratio maximization using the factor-based model, where
the market returns are predicted by a machine-learning algorithm called the
Support Vector Regression (SVR). DJI refers to the Dow Jones Index.

Figure 1: Ex-Post Portfolio Performance
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