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1. Introduction 

 

  A fundamental theorem in finance tells us that an increase in risk causes a decrease in asset 

prices. Relying on the Euler equation, we show that time-varying risk causes the fluctuation 

in asset returns. We then study the risk and return time series relation concerning the value 

versus growth stocks. In doing so, we form an investment portfolio in which we sell growth 

stocks short and buy value stocks and examine the risk and return time series relation of the 

long-short portfolio. The value minus growth portfolio strategy is sometimes called the value 

strategy in the literature. 

  Value stocks are relatively cheap, but growth stocks are relatively expensive when we 

compare their prices to each other concerning some firm values such as book values or earn-

ings. These divergences of the firm's prices may be due to the differences in growth prospects 

or riskiness between value stocks and growth stocks. Traditionally in the literature, value 

stocks are considered to be riskier than growth stocks. Fama and French (1992 and 1996) at-

tributed the value stock risk factor to the value firm's financial distress, partly responsible for 

the excess stock return in their three-factor model. Petkova and Zhang (2005) found that val-

ue stocks tended to covary positively, and growth stocks tended to covary negatively with a 

market risk premium. Zhang (2005) and Bai et al. (2019) ascribed the value stock risk to the 

asymmetric adjustment cost of assets in place of the value firms, especially in bad times. Ai 

and Kiku (2013) showed that growth options were less risky than value assets because growth 

options acted as a hedge against risks in assets in place. 

Empirical studies in the literature reported that value firms earned a higher average return 

than growth firms. However, growth firms outperformed value firms for some periods, which 

led the investors to doubt the value strategy (Capaul et al., 1993, and Asness et al., 2000).   

There exist two competing explanations for the value premium in the literature. One is the 

alpha effect of the CAPM which is known as the value premium puzzle in the literature (e.g., 

Fama and French, 1992). The other is the beta effect of the conditional CAPM in the litera-

ture (e.g., Ang and Chen, 2007; Bai et al., 2019). The purpose of our study is twofold: First, 
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the alpha effect in the literature is a (steady-state) long-run risk effect in our model and the 

long-run risk is a market risk, indicating that the value premium is not an anomaly. Second, 

growth stocks could outperform value stocks for some periods because the time-varying risk 

effect is reverted with a time lag. 

  One of the basic notions in finance is a trade-off between risk and return: A riskier asset 

(e.g., value stock) earns a higher average return than a less risky asset (e.g., growth stock).  

The risk and return trade-off between value stocks and growth stocks are valid across firms at 

a cross-sectional analysis or when risk is invariant with respect to time. What if the risk is 

time-varying and the risk and return relation reverts over time from negativity contemporane-

ously to positivity with a time lag? In other words, what if an increase in risk lowers return 

first before it raises (expected) return? 

  This paper's fundamental premise is that time-varying risk causes much of the stock mar-

ket's return fluctuations and is responsible for the reverting risk and return time series relation. 

Because of this reverting relation, growth firms may outperform value firms for some periods 

and vice versa for other periods even though value firms earn a higher average return in the 

long-run than growth firms. 

  Specifically, we hypothesize that risk is negatively related to return contemporaneously 

and positively related to (expected) return with a time lag both at the portfolio level and at the 

stock market's aggregate level. The time-varying risk effect on return is negligible when ag-

gregated in time. However, there exists a long-run risk effect on return. This long-run risk 

effect is similar to the long-run consumption risk effect across book-to-market sorted portfo-

lios introduced by Ai and Kuku (2013). We model this reverting relation and the long-run re-

lation under a unifying framework of finance's fundamental pricing model to back up this hy-

pothesis . Using the Korean stock market data, we test the hypothesis. 

  Our empirical analysis shows that the frequency of rebalancing value and growth stocks 

does matter for the value strategy's investment performance. We find that investors earned a 

significantly higher accumulated return throughout 2000-2020 in the Korean stock market 

when we rebalance value and growth stocks bi-annually and yearly than monthly and quarter-

ly. Even though the time-varying risk effect on the value minus growth return is negligible 

when aggregated in time, the long-run risk effect is significant and quite close to the value 
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minus growth return's unconditional mean rebalanced bi-annually and yearly. Investors would 

be better off if they let stocks walk through their way to earn a return for several months be-

fore rebalancing the portfolio. We conjecture because it takes time to compensate the inves-

tors for holding risky assets in the stock market. 

  We measure the aggregate risk in three different metrics: market variance, the individual 

variance of typical stock, and the ratio of these two variances. The ratio is a fraction of non-

diversifiable risk relative to the total individual risk of the typical stock. We call this ratio a 

fractional non-diversifiable risk, which Park and Fang (2021) thoroughly discussed. It is also 

similarly known as correlation risk in the literature (e.g., Pollet and Willson, 2010; Adrian et 

al., 2018). Risk at the portfolio level is its portfolio beta multiplied by the aggregate risk in 

the stock market. The division of market variance between fractional non-diversifiable risk 

and individual risk is to see which one is the primary driver in explaining the variation in re-

turn in our regression. 

  Park and Fang (2021) derived risk and return time series relation at the aggregate level. 

The relation’s sign reverted with a passage of time from negativity contemporaneously to 

positivity with a time lag. This reverting relation was, though, derived piecewise based on 

two separate theorems in finance. Park and Fang (2021) derived the negative relation using 

the simple dividend model for pricing stock. On the other hand, the positive relation is based 

on the notion of a trade-off between risk and return on an investment portfolio. The nature of 

the return in these two relations is different: The return in the contemporaneous relation is ex-

post while the return in the relation with a time lag is ex-ante. In this paper, we derive the re-

verting relation under a unifying framework of the Euler equation. By doing so, we hope that 

our derivation becomes more amenable to scientific knowledge. 

Our study is related to one strand of the literature. That is a conditional version of the 

CAPM, which several researchers applied explicitly to the value strategy (e.g., Petkova and 

Zhang, 2005; Bodie et al., 2010; Gubellini, 2014). The literature focused on the variation in 

portfolio beta or market risk premium for the causes of time-varying risk. The variation in 

beta or market risk premium was, in turn, related to some other economic variables such as 

the dividend yield, the term premium, the default premium, and the nominal 1-month Treas-

ury-bill yield. Our study is different from the above literature in a meaningful way. The litera-
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ture dealt with only the notion of a trade-off between risk and return, which corresponded to 

the positive risk and return relation with a time lag in our analysis. However, when one ana-

lyzes the time series relation of risk and return as opposed to the cross-sectional relation at a 

given point in time, it is necessary to deal with the lagged positive relation together with the 

contemporaneous negative relation because we are looking at the fluctuation in return on a 

continuum of time.  

Our paper contributes to the literature in three respects: First, it shows that the alpha effect 

in the literature is a (steady-state) long-run risk effect in our model, indicating that the value 

premium is not an anomaly in the stock market. Second, the time-varying risk effect is re-

verted with a time lag. Hence growth stocks could outperform value stocks for some periods 

even though value stocks earned a higher average return than growth stocks. Third, we report 

that the frequency of rebalancing value and growth stocks matters for the accumulated return 

on value strategy. 

We organize our paper as follows: In Section 2, we rework the Euler equation to derive risk 

and return time series relation. We differentiate the effect on return between the time-varying 

risk effect and the long-run risk effect in our model. Section 3 describes the data and presents 

summary statistics. We show in Figure 1 that the rebalancing frequency matters for the accu-

mulated return on value strategy. Section 4 is on estimation in which our regression equations 

are specified in the first part (Sub-section 4.1), we report our empirical results in the second 

part (Sub-section 4.2). Section 5 provides robustness checks on our results, assuming alterna-

tive estimates of variance terms in the regression equations. In Section 6, we control the  

expected payoff effect on return to check whether the ceteris paribus effect of risk on return 

remains unaltered. Section 7 highlights our contributions to the literature and makes some 

suggestions for further research. Finally, we conclude our remarks in Section 8. 

2. The Model 

  In finance, the fundamental asset pricing model is based on the Euler equation. The Euler 

equation states that an asset's price is, in equilibrium, determined as an expected value of the 

product of the stochastic discount factor (SDF) and its future payoff. The SDF is often re-

ferred to as a pricing kernel in the asset pricing literature. To derive the risk and return time 

series relation, we transform the Euler equation's price term into the return term concerning 
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its relation to risk. 

We write the Euler equation introduced in the literature as (footnote 1)  = ( × ),                                                (1) 

where 

     = an expectation operator taken at time , 
     = the price of an asset at time , 
     = stochastic discount factor (SDF), 

     = the payoff of the asset at time  + 1. 

  When the representative investor solves his (her) expected utility maximization problem, 

the SDF is determined as the marginal rate of substitution of consumption at time  + 1, ( + 1) for consumption at time , (). It is then discounted at the investor’s time prefer-

ence factor. Assuming that the investor’s utility is a function of consumption, i.e., (), the 

SDF can be expressed as [()() ], where  is the investor’s time preference parameter 

and ′ is the first-order derivative of  with respective to , i.e., du/dc. The parameters 

associated with the SDF are those of the investor’s risk aversion and time preference. 

When the underlying asset is riskless, we can obtain from (1) that = 1/m, where  is a risk-free gross rate. Rearranging (1), we have that   = ()() +  (, ) 
   =  () +  ( , ),                           (2) 

where   is a conditional covariance where an expectation is taken at time  
  The investor’s risk-averse utility function is concave in  . Hence, the sign of  ( , ) is strictly negative under the concavity of (), i.e., ′′() < 0. There-

fore, equation (2) implies that a risky asset at time  is worth less than the riskless asset for 

the equal (expected) payoff at time  + 1.   
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Moving backward (1) by one period,  = () = (1/) .                                       (3) 

We obtain (3) because all variables in (3) are ex-post (non-random) at time t. In that event, 

the Euler equation collapses to a pricing kernel with certainty. 

Dividing (2) by (3), we have that  =    +   ,  ,                                     (4) 

where ()	is a gross return at time , /. We assume that all payoffs are paid in divi-

dend at  = 1,2, and hence X／X is equal to /.  In that event, we can rewrite 

(4) as  = () +  (, ).                                     (5) 

The next step is to relate  and () to risk. We can write the second covariance term 

in (5) as  (, 	) =    (, ).                         (6) 

  Now we want to show that  (, ) is a negative function of the conditional 

(time-varying) variance of . For simplicity, let’s assume a quadratic utility function for 

the investor, i.e., 	 = 		– 	2, where  > 0. (footnote 2) Here we express the investor’s 

utility as a function of the gross return,  since a higher  means a greater . In that event, 

we can write that  (, ) = () 
               =  − 2.                              (7) 

  Given that the investor is risk-averse, i.e.,  > 0, equations (5) and (7) mean that  is 

negatively related to the conditional variance of . Putting together (5), (6), and (7), we 

will have the following relation that  is negatively related to the conditional variance of :  = () − (),                                         (8) 
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where  = 2()()( ’) 	> 	0. We rearrange (8) as 

 () −  = ().                                       (9) 

  Equation (9) dictates that an increase in the time-varying risk causes a more considerable 

discrepancy between () and . Knowing that a more significant risk lowers  as 

we can see from (2), equation (9) implies that at a predetermined   and a given ex-

pected payoff, (), a decline in  means a lower , and a higher (). In sum, 

the Euler equation states that other things (e.g., future payoff) being equal, an increase in risk 

lower return contemporaneously and raises future expected return. Time-varying risk is, by 

nature, transitory and moves around a long-run risk level. Equation (9) is our central premise 

that time-varying risk is responsible for the stock returns' fluctuation around its long-run level, 

other things being equal.  

  We wish to illustrate this reverting risk and return time series relation by discussing the 

stock price movements during the recent financial crisis periods. When the investor observes 

that a systemic shock such as the Covid-19 pandemic hits the market, he or she perceives that 

the future payoff,  will be considered more uncertain. This increase in risk today has an 

instantaneous negative impact on the current stock price  and lowers the stock return  
contemporaneously. At the same time, a lowered price,  means a higher expected return 

unless investors change their future payoff prospect in the long-run. Investors may expect that 

the economy would return to a normal state, albeit with more significant uncertainty, when 

the Covid-19 pandemic becomes under control in the end. The higher expected return is, in 

equilibrium, required to compensate the investors for holding the stocks in a financial or 

health crisis. Judging from the past financial crisis experiences, we found that the price fell 

first and then recovered. Time-varying risk indeed causes the return fluctuation in the stock 

market.  

  We define a long-run steady state in which risk and expected return are invariant with time 

and constant. There is a particular relationship between them at a long-run steady-state (see 

Appendix A for proof): () =  +  (),                                             (10) 
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where () is an unconditional mean return, and  () is an unconditional variance of 

return that would prevail at a long-run steady state. Equation (10) states that at a long-run 

steady-state, a risky asset earns a higher average return than a safe asset over a long horizon, 

and the excess return depends on the asset's riskiness. Equation (10) is similar to a static ver-

sion of the CAPM derived from the Euler equation in Chaigneau (2011).  

We want to derive risk and return time series relation at a portfolio level: Value stocks ver-

sus growth stocks. Subscripts  and  refer to value stock portfolio and growth stock port-

folio, respectively. The Euler equation (1) holds for value and growth portfolios, respectively. 

Therefore, we can derive the relations, (9) for  and , respectively such that ,( + 1) − ,() = ,( + 1),  for v and g, respectively.    (11) 

Define the value and growth portfolio betas,  and  as the ratios of  and  to , 

respectively. In such cases, we can have that [( + 1)] − () =  × (),                            (12) 

and  [( + 1)] − () =  × ().                            (13) 

Now consider a value minus growth portfolio,  − . Subtracting (13) from (12), it immedi-

ately follows that [( + 1)] − (t) =  × ( − )()                 (14) 

  Equations (12) and (13) state that the value and growth stock portfolio returns are negative-

ly related to the aggregate stock market risk, and at the same time, their expected returns are 

positively related to the aggregate stock market risk. The sensitivity of return to risk depends 

on their portfolio beta’s magnitude. Equation (14) indicates that the same reverting relation 

holds for the value minus growth portfolio. 

  At a long-run steady-state, we will have the same risk and return relation as in (10) con-

cerning the value, the growth, and the value minus growth portfolios, respectively: 
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() =  +  ×  (),                                     (15) () =  +  ×  (),                                     (16) 

and () =  +  ×  −  ().                              (17) 

 Ai and Kuku (2013) introduced the differential effect in the long-run consumption risk 

across book-to-market sorted portfolios. Their analysis is comparable to our long-run risk ef-

fect on the return of value and growth stocks. They studied a cross-section of equity returns 

while ours is on time-series relation between risk and return. 

3. Data and Descriptive Statistics 

  This section describes the data used in our empirical analysis and presents some figures 

and statistics to understand the risk and return time series relation for value and growth stocks. 

Our data consists of stock market data and financial data. Stock market data are the KOSPI 

200 firms’ daily stock prices and the KOSPI 200 index. Financial data are the KOSPI 200 

firms’ year-end book values and quarter-end operating and net profits. The data run from Jan-

uary of 2000 to December of 2020. W e  collect our data from DataGuide web 

(http://www.dataguide.co.kr), which is serviced by a private data vending company, FnGuide 

Inc. in Korea.  

How frequently value and growth stocks portfolios are rebalanced does matter for the re-

turn performance. We do portfolio rebalancing as follows. First, all firms’ book-to-market 

ratios are updated using the market prices on the first business day of each month. Second, 

based on the rankings of the month’s book-to-market ratios of the KOSPI 200 firms, the top 

20 stocks (top deciles) are assigned value stocks, and the bottom 20 stocks (bottom deciles) 

are assigned growth stocks every month. Last, for the monthly, quarterly, bi-annually, and 

yearly rebalanced portfolios, we newly form value stock portfolios and growth stock portfoli-

os at the beginning of the months, quarters, half years, and years, respectively January of 

2000 to December of 2020. 

The rebalancing frequencies chosen in the previous studies were quite diverse from the 

quarterly frequency (e.g., Asness et al., 2000) and the bi-annual frequency (Capual et al., 
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1993) to the yearly frequency (e.g., Fama and French, 1992).  

  Figure 1 shows the accumulated returns on the value minus growth stocks for the monthly, 

quarterly, bi-annually, and yearly rebalanced portfolios from January of 2000 until December 

of 2020. If value firms earn a higher average return than growth firms, we expect that the ac-

cumulated return on the value minus growth portfolio steadily grows over time. As seen in 

Figure 1, the accumulated return steadily increases for the bi-annual and the yearly re-

balanced portfolios. This steadily growing accumulated return on value minus growth portfo-

lio is quite similar to those documented in other countries such as the U.S., the U.K., and Ja-

pan by Capual et al. (1993). They studied bi-annually rebalanced value and growth indexes. 

However, the accumulated return declines modestly around 2008 for the quarterly rebalanced 

portfolio and sharply around 2007 for the monthly rebalanced portfolio. These observations 

for the monthly and the quarterly rebalanced portfolios indicated that growth firms outper-

formed value firms for prolonged periods. They are also consistent with Asness et al.'s (2000) 

findings that the value stocks performed poorly relative to the growth stocks for some periods. 

Asness et al. (2000) studied quarterly rebalanced portfolios. 

 

 

Figure 1. Accumulated return on value minus growth portfolios 

Note: The book-to-market ratios are updated based on the current market prices each month. The monthly, quar-
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terly, bi-annually, and yearly rebalancing are done on the first business days of the months, quarters,  half years, 

and years, respectively. Returns are equally weighted portfolios’ and daily compounded. 

 

  Table 1 shows the summary statistics of the portfolios' monthly returns of the value, the 

growth, the value minus growth stocks, and the KOSPI 200 index for the sample period of 

January 2000 – December 2020. KOSPI 200 is value-weighted while the value stocks and the 

growth stocks portfolios are equally weighted. We show the statistics for the monthly, quar-

terly, bi-annually, and yearly rebalanced portfolios in Panels A, B, C, and D of Table 1, re-

spectively. As we can see from Table 1, the value returns are higher. However, the growth re-

turns are lower as we rebalance the portfolios less frequently, i.e., from monthly to quarterly, 

from quarterly to bi-annually, and from bi-annually to yearly. The yearly-rebalanced value 

minus growth portfolio earned the highest mean monthly return of 1.20% (Panel D of Table 

1). The monthly, quarterly, and bi-annually rebalanced portfolios yielded -0.5%, 0.6%, and 

1.0%, respectively.  

  Table 1 shows that the standard deviation of the monthly return ranks from highest to low-

est in the order of the value, the growth, the value minus growth, and the KOSPI 200 irre-

spectively of the rebalancing frequency. Even though the average return varies according to 

how often we rebalance the portfolios, the risk (standard deviation) does very little. When 

evaluating the value minus growth portfolios' relative performance in terms of the Sharp ratio, 

the yearly- rebalanced value minus growth portfolio ranks the best. Its Sharp ratio (computed 

as return/standard deviation) is 0.192. Compared to the Sharp ratio of 0.068 of KOSPI 200, it 

is almost three times as high as the KOSPI 200’s. The Sharp ratios of the monthly, quarterly, 

and bi-annually rebalanced portfolios are -0.067, 0.081, and 0.150, respectively. 

The mean BM ratios of the value stocks and the growth stocks are 5.838 and 0.259, respec-

tively, when we rebalance the value and growth stocks monthly (Panel A of Table 1). The cor-

responding value spread (= value stock BM ratio minus growth stock BM ratio) is 5.579. The 

value spreads are slightly different when we rebalance the value and growth stocks quarterly, 

bi-annually, or yearly (Panels B, C, and D of Table1).  
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Table 1 Summary statistics of monthly returns of value, growth, and value minus growth  

Panel A: Value and growth stocks are rebalanced monthly 

 Return Sharp ratio BM ratio 

 
Kospi 

200 
Value Growth 

Value-

growth 

Kospi 

200 
Value Growth 

Value-

growth 

 

Value 
 

 

Growth 
 

Value-

Growth  

Mean 0.004 -0.004 0.000 -0.005 

0.068 -0.048 0.006 -0.067 

5.838 0.259 5.579 

Maximum 0.208 0.237 0.282 0.293 
28.33

8 
0.545 27.793 

Minimum -0.235 -0.537 -0.475 -0.218 1.762 0.116 1.575 

Standard 

Deviation 
0.064 0.091 0.084 0.072 6.245 0.107 6.154 

 

Panel B: Value and growth stocks are rebalanced quarterly 

 Return Sharp ratio BM ratio 

 
Kospi 

200 
Value Growth 

Value-growt

h 

Kospi 

200 
Value Growth 

Val

ue-g

rowt

h 

 

Value 
 

 

Grow

th 
 

 

Value-

Growt

h  

Mean 0.004 0.000 -0.005 0.006 

0.068 0.004 -0.062 
0.08

1 

5.823 0.262 5.562 

Maximum 0.208 0.270 0.282 0.293 27.926 0.554 27.372 

Minimum -0.235 -0.537 -0.475 -0.218 1.762 0.116 1.575 

Standard Deviati

on 
0.064 0.091 0.084 0.069 6.240 0.107 6.149 

 

Panel C: Value and growth stocks are rebalanced bi-annually 

 Return Sharp ratio BM ratio 

 
Kospi 

200 
Value Growth Value-growth 

Kospi 

200 
Value Growth 

Value-

growth 

 

Value 
 

 

Growth 
 

Value-

Growth  

Mean 0.004 0.003 -0.007 0.010 0.068 0.031 -0.085 0.150 5.794 0.272 5.522 
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Maximum 0.208 0.318 0.282 0.232 27.954 0.741 27.214 

Minimum -0.235 -0.478 -0.397 -0.186 1.762 0.116 1.575 

Standard 

Deviation 
0.064 0.090 0.083 0.066 6.253 0.117 6.156 

 

Panel D: Value and growth stocks are rebalanced yearly 

 Return Sharp ratio BM ratio 

 
Kospi 

200 
Value Growth 

Value-

growth 

Kospi 

200 
Value 

Growt

h 

Val-

ue-

growt

h 

 

Value 
 

Growt

h 
 

Value-

Growth  

Mean 0.004 0.004 -0.008 0.012 

0.068 0.048 -0.097 0.192 

5.710 0.283 5.427 

Maximum 0.208 0.318 0.282 0.232 26.588 1.022 25.565 

Minimum -0.235 -0.466 -0.393 -0.186 1.713 0.133 1.495 

Standard Devi-

ation 
0.064 0.090 0.083 0.064 6.219 0.122 6.117 

Note: Portfolio returns are monthly returns throughout January of 2000 to December of 2020. The Sharp ratios 

of the KOSPI 200, the value, the growth, and the value minus growth stocks are computed by taking the ratios 

of the portfolio’s returns to their standard deviations, respectively. The respective BM ratios are updated based 

on the current market prices every month. 

 

We compute Sharp ratio by taking the ratio of return to standard deviation. Value spread is 

value stock BM ratio minus growth stock BM ratio. 

 

Table 2 shows the correlation of the monthly return between value, growth, and value mi-

nus growth, and KOSPI 200, respectively. As we can see in Panels A, B, C, and D of Table 2 

for the monthly, quarterly, bi-annually, and yearly rebalanced portfolios, the returns of the 

value and the KOSPI 200 index, and the growth and the KOSPI 200 index are highly corre-

lated to each other. However, the correlation of the value minus growth and the KOSPI 200 

index is very low (e.g., 0.066 in Panel D), and their return tends to move independently of 

one another. The correlation between the value and the value minus growth portfolios is 
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0.464 (in Panel D). The correlation between the growth and the value minus growth portfoli-

os is -0.274(in Panel D), respectively. It appears that the value minus growth return is more 

driven by the value stocks than the growth stocks. Panels A, B, and C of Table 2 also show 

that the correlations between the value, the growth, the value minus growth, and the KOSPI 

200 portfolios differ little by the rebalancing frequency. At this point, it is interesting to note 

that the rebalancing frequency matters for the mean returns of the portfolios but not for their 

standard deviations and correlations. 

 

Table 2. Correlation of monthly return of value, growth, and value minus growth 

Panel A: Value and growth stocks are rebalanced monthly 

 KOSPI200 Value Growth Value-growth 

KOSPI200 1.000 0.788 0.765 0.104 

Value 0.788 1.000 0.665 0.490 

Growth 0.765 0.665 1.000 -0.325 

Value-growth 0.104 0.490 -0.325 1.000 

 

Panel B: Value and growth stocks are rebalanced quarterly 

 KOSPI200 Value Growth Value-growth 

KOSPI200 1.000 0.786 0.777 0.092 

Value 0.786 1.000 0.691 0.479 

Growth 0.777 0.691 1.000 -0.304 

Value-growth 0.092 0.479 -0.304 1.000 

 

Panel C: Value and growth stocks are rebalanced bi-annually 

 KOSPI200 Value Growth Value-growth 

KOSPI200 1.000 0.777 0.786 0.077 
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Value 0.777 1.000 0.714 0.474 

Growth 0.786 0.714 1.000 -0.278 

Value-growth 0.077 0.474 -0.278 1.000 

 

Panel D: Value and growth stocks are rebalanced yearly 

 KOSPI200 Value Growth Value-growth 

KOSPI200 1.000 0.780 0.796 0.066 

Value 0.780 1.000 0.725 0.464 

Growth 0.796 0.725 1.000 -0.274 

Value-growth 0.066 0.464 -0.274 1.000 

Note: Magnitudes are Pearson pairwise correlations between KOSPI 200, value stocks, growth stocks, and value 

minus growth stocks, respectively. They are computed using daily closing prices. 

 

Park and Fang (2021) decomposed market variance into the product of the variance of typ-

ical stock and the ratio of these two variances such that () = () × (()/()), 
where () and (i) stand for the market variance and the variance of the typical stock, 

respectively. Our market portfolio, M is KOSPI 200. (i) is an average variance of individ-

ual stocks for i = 1, 2...M. 

  Table 3 shows the summary statistics of our three risk metrics, (), (i) and the 

ratio of these two variances. () and (i) are the variances in month t and computed 

using GARCH(1,1).  We see from Table 3 that the means of (), (i) and ()/(i) are 0.005, 0.024, and 0.178, respectively. When we convert those two variances into 

annual standard deviations, they are approximately 0.24 and 0.53, respectively. The risk of 

the market portfolio is much less than the risk of the typical stock. These numbers are quite 

close to the standard deviations estimated in Elton and Gruber (1977). 

  Another crucial thing to note is that these risks vary much over time. The market variance’s 

standard deviation is far greater than its mean, and a maximum of the variations in the vari-

ance is 0.087 (= 0.087-0.000), which is a 28% change from month to month. This time-
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varying risk of the market portfolio is due to the time-varying nature of both individual risk 

and the fractional non-diversifiable risk, i.e., the ratio of two variances. 

Table 3. Summary statistics of three risk metrics 

 							() (i) ratio 

Mean 0.005 0.024 0.178 

Maximum 0.087 0.168 0.636 

Minimum 0.000 0.005 0.012 

Std. Dev. 0.008 0.023 0.110 

Observations 252 252 252 

Note: (), (i) are the variance of the daily log return of KOSPI 200, and the average variance of the 

daily log returns of individual stocks, respectively. The ratio ()/(i) measures the fraction of the non-

diversifiable risk relative to the individual risk of typical stock, and is called the fractional non-diversifiable risk 

(Park and Fang, 2021). They are estimated using GARCH (1,1). 

 

Table 4 shows the correlation of three risk metrics at times  and  − 1. The market vari-

ance is highly correlated to both the individual risk and the fractional non-diversifiable risk 

contemporaneously. They are 0.729 and 0.679, respectively. The high correlation is because 

the market variance is simply the product of the individual risk and the fractional non-

diversifiable risk. On the other hand, the correlation between the individual risk and the frac-

tional non-diversifiable risk is relatively low, i.e., 0.242. The correlation between () 
and (), and the correlation 

 between (i) and (i) are somewhat modest to high, ranging from 0.389 to 0.462, 

indicating a heteroscedasticity problem.  

 

Table 4. Correlation of three risk metrics 

 () () (i) (i) 
()(i)  

()(i)  () 1.000 0.462 0.729 0.395 0.679 0.389 
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() 0.462 1.000 0.364 0.726 0.411 0.677 (i) 0.729 0.364 1.000 0.388 0.242 0.238 (i) 0.395 0.726 0.388 1.000 0.305 0.236 ()(i)  0.679 0.411 0.242 0.305 1.000 0.479 ()(i)  0.389 0.677 0.238 0.236 0.479 1.000 

Note: (), (i) are the variance of the daily log return of KOSPI 200, and the average variance of the 

daily log returns of individual stocks, respectively. Magnitudes are Pearson pairwise correlations between three 

risk metrics at times t and t-1. 

4. Estimation 

(4.1) Specification  

  This section, we will specify our regression equations to test the risk and return time series 

relation in the stock market with a particular interest in understanding value versus growth 

stocks' behavior. The empirical finance literature showed that stock return time series exhibit-

ed heteroscedasticity represented in such models as GARCH(1,1) and TARCH(1,1), where 

the variance of  depends on the variance of  Whitelaw (1994) also found that return 

led variance. Taking these into consideration, we will replace the expected variance at time , () by the contemporaneous time-varying variance,  () in (9) for our specifi-

cation. All other equations follow suit as () is replaced by  (). 
  We define net returns,  and  as R − 1 and R − 1	, respectively. When we sub-

tract ones from both (), and  terms, we have that () −  = [() −1] − [ − 	1] = () − . We also know that the variance of gross return is equal to the 

variance of net return since  () =  [ − 1] =  ().  Accordingly, we will use  and  instead of  and  as our dependent variables throughout our regression 

analysis.  Risk is usually related to net return in the stock market in the empirical literature. 

In the following regressions, we compute  using log return, i.e., ln	(/), where  is 

the closing stock price at the end of month .  

  Estimation of expected return, () is a challenging issue in the literature. (footnote 3) 
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We assume that a realized future return is the sum of the expected return and a random error 

term for simplicity. 

  There are several ways to estimate  () of monthly return in month : Sample vari-

ance, GARCH(1,1) and TARCH(1,1). We compute month  sample variance by taking an 

equally weighted average of daily squared returns within month . We compute GARCH(1,1) 

and TARCH(1,1) variances in month  as of the final business day of month . Consequent-

ly, more weights are given to recent days in the case of GARCH(1,1) and TARCH(1,1), re-

spectively. Equal weight is given to each day in sample variance. Our baseline is GARCH(1,1) 

estimation of  (). However, we will use other estimations too, where appropriate. 

  As for the independent variables of our regression equations, we will use three risk metrics 

discussed in Section 3 i.e., market variance (), the variance of typical stock  (), and 

the ratio of these two variances. As discussed in Park and Fang (2021), we want to determine 

whether the fractional non-diversifiable risk is more responsible for the risk and return time 

series relation than the individual risk at the portfolio levels of value and growth stocks. 

  Based on our discussion above and in Section 2, we can specify our regression equations as 

follows:  =  + () + (()) + ,                          (18) 

 =  +  () + () + ()() +  ()() + .                    (19) 

where  is a random error term.  

The constants in (18)-(19) pick up the long-run risk effect on return as presented in (10), (15), 

(16), and (17), respectively. The other terms capture the time-varying risk effect on return, 

which reverts with a time lag. The time-varying risk represents a transitory deviation from the 

long-run risk. We expect that  > 0,  < 0 and  > 0 in (18), and  > 0,  < 0,  > 0,  < 0	and  > 0 in (19). We rename (18) and (19) as models 1 and 2, respective-

ly. We run regressions of (18) and (19), using KOSPI 200, value stocks, growth stocks, and 

value minus growth stocks as our dependent variables. We rebalance value stocks and growth 
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stocks monthly, quarterly, bi-annually, and yearly, respectively, and the regression results are 

reported accordingly in the following section. 

(4.2) Empirical Results 

  First, we analyze the regression results of the risk and return time series relation at the ag-

gregate stock market level, i.e., KOSPI 200. As seen in Table 5, all coefficients are significant 

(p<0.05) and have expected signs in model 1. Indeed, the risk is negatively related to risk 

contemporaneously and positively to risk with a time lag.  In terms of goodness-of-fit, mod-

el 2 has a higher adjusted R-squared of 0.167 than model 1’s adjusted R-squared of 0.086. 

The coefficients of fractional non-diversifiable risk at time  and  − 1 are highly signifi-

cant  (p<0.01) in model 2. However, the individual risk term loses its significance in model 

2. Fractional non-diversifiable risk is the primary driver in explaining the variation in return. 

Park and Fang (2021) reported the same result for the sample period of 1995-2017 in the Ko-

rean, the U.S., and the U.K. stock markets.  

  Next, we analyze regression at the portfolio level: Value versus growth stocks. As our pre-

liminary checks have revealed in Figure 1 and Tables 1 and 2, the rebalancing frequency does 

matter for the return performance of value stocks relative to growth stocks. Tables 6, 7, 8, and 

9 report the regression results when we rebalance value and growth stocks monthly, quarterly, 

bi-annually, and yearly, respectively. Panels A, B, and C of Tables 6-9 show the regression 

results when we use value stocks, growth stocks, and value minus growth stocks as the re-

gression equation's dependent variables. 

  Table 6 reports the regression results when we rebalance value stocks and growth stocks 

monthly. In terms of goodness-of-fit, the regression results are relatively good for the value 

stocks in which the adjusted R-squared is from 0.156 (model 1) to 0.216 (model 2). For the 

growth stocks, the adjusted R-squared is from 0.075 (model 1) to 0.138 (model 2). For the 

value minus growth stocks, the adjusted R-squared is relatively low, i.e., 0.023 (model 1) to 

0.031 (model 2). It is probably because the variation in the value minus growth return con-

tains a more significant amount of noise than the variation in the value return alone or the 

growth return alone. All coefficients have expected signs and statistically significant except 

for the individual risk variable in model 2.  At this juncture, it deserves mentioning that the 

constant terms are not statistically significant for the value minus growth stocks in models 1 
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and 2 (Panel C). It indicates that even though the time-varying risk effect on the value minus 

growth return is statistically significant, the long-run risk effect is not so when we rebalance 

value and growth stocks monthly. This regression result seems to verify the observation that 

the accumulated return on the monthly-rebalanced value minus growth portfolio did not grow 

steadily over time, as shown in Figure 1.  

  Table 7 reports the regression results when we rebalance value and growth stocks quarterly. 

The regression results for the quarterly rebalanced portfolios are similar to those for the 

monthly rebalanced portfolios in adjusted R-squares and the individual coefficients' signifi-

cance. The time-varying risk effect is reverting and significant, but the long-run risk effect is 

not significant for the value minus growth stocks. 

Tables 8 and 9 report the regression results when we rebalance value and growth stocks bi-

annually and yearly, respectively. As per the time-varying risk effect on return, the results are 

similar to those reported in Tables 6 and 7. The time-varying risk effect is reverting and sig-

nificant. When we test the long-run risk effect on value minus growth return in terms of mod-

el 1, the effects (measured by constant terms) are significant for the bi-annually rebalanced 

portfolio (p<0.05) and the yearly-rebalanced portfolio (p<0.01). The constant term magni-

tudes are 0.11 and 0.12 for the bi-annually- and yearly- rebalanced portfolios, respectively 

(Panel Cs of Table 8 and 9). These magnitudes are approximately equal to the unconditional 

means of the monthly returns for the bi-annually-rebalanced and the yearly-rebalanced port-

folios of value minus growth stocks (Panels C and D of Table1). However, the long-run risk 

effects on value minus growth return are not significant when we rebalance value and growth 

stocks monthly or quarterly. This result seems to verify that the accumulated return on value 

minus growth stocks grew steadily for the bi-annually- and yearly portfolios, but not for the 

monthly- and quarterly portfolios, as shown in Figure 1.  

Our model predicts that the time-varying risk effect is reverting with a time lag, and hence 

the temporal effect is negligible when aggregated in time. This prediction will be correct if 

the unconditional mean return is almost entirely due to the long-run risk effect. Our regres-

sion results have shown these as the magnitudes of constant terms were quite close to the un-

conditional mean returns for the bi-annually- and yearly- rebalanced portfolios. 

Table 5 Regression results of (18)-(19)  
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 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.010 2.517 0.013 0.021 2.552 0.011 () -4.073 -3.274 0.001    () 3.034 2.174 0.031    ()    0.379 0.421 0.674 ()    -0.934 -1.038 0.300 ()()     -0.332 -4.361 0.000 ()()     0.319 3.776 0.000 

R-squared 0.094 R-squared 0.181 

Adjusted R-squared 0.086 Adjusted R-squared 0.167 

Durbin-Watson stat 2.030 Durbin-Watson stat 2.129 

Note: Models 1 and 2 are as follows:  

Model 1:  =  + () + (()) + ,                               (18) 

Model 2:  =  +  () + () + ()() +  ()() + .                             (19) 

The dependent variables are the monthly returns on KOSPI 200. Variances (explanatory variables) are estimated 

using GARCH(1,1). We use HAC standard errors and covariance (Bartlett kernel, Newey-West fixed) to correct 

for heteroscedasticity of regression residuals. 

 

Table 6. Regression results of (18)-(19) when value and growth stocks are rebalanced monthly 

Panel A. Value stocks 

 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.004 0.719 0.473 0.025 2.331 0.021 () -7.705 -5.253 0.000    
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() 5.973 3.806 0.000    ()    -0.187 -0.140 0.889 ()    -1.196 -1.047 0.296 ()()     -0.482 -4.135 0.000 ()()     0.519 5.810 0.000 

R-squared 0.163 R-squared 0.229 

Adjusted R-squared 0.156 Adjusted R-squared 0.216 

Durbin-Watson stat 2.033 Durbin-Watson stat 2.066 

 

Panel B. Growth stocks 

 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.006 1.132 0.259 0.030 2.562 0.011 () -5.045 -3.775 0.000    () 3.949 2.750 0.006    ()    -1.970 -0.905 0.366 ()    0.263 0.169 0.866 ()()     -0.245 -1.909 0.057 ()()     0.333 3.587 0.000 

R-squared 0.083 R-squared 0.152 

Adjusted R-squared 0.075 Adjusted R-squared 0.138 

Durbin-Watson stat 2.145 Durbin-Watson stat 2.236 

 

Panel C. Value minus growth stocks 

 Model1 Model 2 
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Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C -0.002 -0.344 0.731 -0.005 -0.395 0.693 () -2.660 -1.971 0.050    () 2.024 2.153 0.032    ()    1.783 0.912 0.363 ()    -1.459 -0.898 0.370 ()()     
-0.236 -1.850 0.066 ()()     
0.186 1.853 0.065 

R-squared 0.031 R-squared 0.047 

Adjusted R-squared 0.023 Adjusted R-squared 0.031 

Durbin-Watson stat 1.949 Durbin-Watson stat 1.923 

Note: Models 1 and 2 are as follows:  

Model 1:  =  + () + (()) + ,                                (18) 

Model 2:  =  +  () + () + ()() +  ()() + .                         (19) 

The dependent variables in Panels A, B, and C are the monthly returns on value stocks, growth stocks, and value 

minus growth stocks. Variances (explanatory variables) are estimated using GARCH(1,1). We use HAC stand-

ard errors and covariance (Bartlett kernel, Newey-West fixed) to correct for heteroscedasticity of regression re-

siduals. 

 

Table 7. Regression results of (18)-(19) when value and growth stocks are rebalanced quarterly 

Panel A. Value stocks 

 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.009 1.463 0.145 0.030 2.830 0.005 () -7.519 -5.142 0.000    



24 

 

() 5.821 3.728 0.000    ()    -0.240 -0.183 0.855 ()    -1.198 -1.079 0.282 ()()     -0.469 -4.179 0.000 ()()     0.513 6.001 0.000 

R-squared 0.157 R-squared 0.224 

Adjusted R-squared 0.150 Adjusted R-squared 0.211 

Durbin-Watson stat 2.042 Durbin-Watson stat 2.088 

 

Panel B. Growth stocks 

 Model1 Model 2 

Variable Coefficient 
t-

Statistic 
Prob. Coefficient t-Statistic Prob. 

C 0.003 0.516 0.606 0.033 2.988 0.003 () -5.462 -4.245 0.000    () 3.907 2.781 0.006    ()    -1.899 -0.945 0.346 ()    -0.246 -0.172 0.863 ()()     -0.262 -2.168 0.031 ()()     0.368 4.233 0.000 

R-squared 0.097 R-squared 0.182 

Adjusted R-squared 0.090 Adjusted R-squared 0.169 

Durbin-Watson stat 2.098 Durbin-Watson stat 2.222 

 

Panel C. Value minus growth stocks 
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 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient 
t-

Statistic 
Prob. 

C 0.006 1.204 0.230 -0.002 -0.210 0.834 () -2.058 -1.626 0.105    () 1.914 2.174 0.031    ()    1.659 0.957 0.340 ()    -0.952 -0.664 0.507 ()()     -0.206 -1.820 0.070 ()()     0.144 1.598 0.111 

R-squared 0.022 R-squared 0.040 

Adjusted R-squared 0.014 Adjusted R-squared 0.024 

Durbin-Watson stat 2.021 Durbin-Watson stat 2.026 

Note: Models 1 and 2 are as follows:  

Model 1:  =  + () + (()) + ,                     (18) 

Model 2:  =  +  () + () + ()() +  ()() + .                        (19) 

The dependent variables in Panels A, B, and C are the monthly returns on value stocks, growth stocks, and value 

minus growth stocks. Variances (explanatory variables) are estimated using GARCH(1,1). We use HAC stand-

ard errors and covariance (Bartlett kernel, Newey-West fixed) to correct for heteroscedasticity of regression re-

siduals. 

 

Table 8 Regression results of (18)-(19) when value and growth stocks are rebalanced bi-

annually  

Panel A. Value stocks 

 Model1 Model 2 
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Variable Coefficient t-Statistic Prob. Coefficient 
t-

Statistic 
Prob. 

C 0.010 1.592 0.113 0.030 2.793 0.006 () -6.978 -5.338 0.000    () 5.574 3.716 0.000    ()    0.340 0.264 0.792 ()    -1.661 -1.593 0.112 ()()     -0.488 -4.354 0.000 ()()     0.533 6.135 0.000 

R-squared 0.137 R-squared 0.225 

Adjusted R-squared 0.130 Adjusted R-squared 0.212 

Durbin-Watson stat 2.031 Durbin-Watson stat 2.090 

 

 

Panel B. Growth stocks 

 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C -0.001 -0.113 0.910 0.024 2.366 0.019 () -5.365 -4.028 0.000    () 4.134 2.682 0.008    ()    -1.419 -0.818 0.414 ()    -0.189 -0.143 0.886 ()()     -0.291 -2.539 0.012 ()()     0.357 3.916 0.000 

R-squared 0.096 R-squared 0.164 
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Adjusted R-squared 0.089 Adjusted R-squared 0.150 

Durbin-Watson stat 2.129 Durbin-Watson stat 2.222 

 

Panel C. Value minus growth stocks 

 Model 1 Model 2 

Variable 
Coeffi-

cient 
t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.011 2.210 0.028 0.006 0.690 0.491 () -1.612 -2.200 0.029    () 1.441 2.117 0.035    ()    1.759 1.371 0.172 ()    -1.472 -1.336 0.183 ()()     -0.197 -2.026 0.044 ()()     0.176 2.140 0.033 

R-squared 0.014 R-squared 0.044 

Adjusted R-squared 0.006 Adjusted R-squared 0.028 

Durbin-Watson stat 2.047 Durbin-Watson stat 2.051 

Note: Models 1 and 2 are as follows:  

Model 1:  =  + () + (()) + ,                     (18) 

Model 2:  =  +  () + () + ()() +  ()() + .                             (19) 

The dependent variables in Panels A, B, and C are the monthly returns on value stocks, growth stocks, and value 

minus growth stocks. Variances (explanatory variables) are estimated using GARCH(1,1). We use HAC stand-

ard errors and covariance (Bartlett kernel, Newey-West fixed) to correct for heteroscedasticity of regression re-

siduals. 
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Table 9 Regression results of (18)-(19) when value and growth stocks are rebalanced yearly  

Panel A. Value stocks 

 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.012 1.899 0.059 0.031 2.963 0.003 () -6.869 -5.514 0.000    () 5.441 3.950 0.000    ()    0.358 0.277 0.782 ()    -1.686 -1.630 0.104 ()()     -0.481 -4.370 0.000 ()()     0.527 6.214 0.000 

R-squared 0.135 R-squared 0.223 

Adjusted R-squared 0.128 Adjusted R-squared 0.210 

Durbin-Watson stat 2.042 Durbin-Watson stat 2.090 

Panel B. Growth stocks 

 Model1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C -0.001 -0.132 0.895 0.023 2.308 0.022 () -5.363 -3.995 0.000    () 3.959 2.340 0.020    ()    -1.524 -0.898 0.370 ()    -0.076 -0.059 0.953 ()()     -0.277 -2.455 0.015 ()()     0.337 3.623 0.000 

R-squared 0.096 R-squared 0.157 

Adjusted R-squared 0.089 Adjusted R-squared 0.143 
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Durbin-Watson stat 2.168 Durbin-Watson stat 2.263 

Panel C. Value minus growth stocks 

 Model 1 Model 2 

Variable 
Coeffi-

cient 
t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.012 2.694 0.008 0.008 0.898 0.370 () -1.506 -2.034 0.043    () 1.482 1.736 0.084    ()    1.882 1.550 0.123 ()    -1.610 -1.527 0.128 ()()     -0.204 -2.137 0.034 ()()     0.190 2.312 0.022 

R-squared 0.014 R-squared 0.052 

Adjusted R-squared 0.006 Adjusted R-squared 0.036 

Durbin-Watson stat 2.097 Durbin-Watson stat 2.083 

Note: Models 1 and 2 are as follows:  

Model 1:  =  + () + (()) + ,                        (18) 

Model 2:  =  +  () + () + ()() +  ()() + .                         (19) 

 

The dependent variables in Panels A, B, and C are the monthly returns on value stocks, growth stocks, and value 

minus growth stocks. Variances (explanatory variables) are estimated using GARCH(1,1). We use HAC stand-

ard errors and covariance (Bartlett kernel, Newey-West fixed) to correct for heteroscedasticity of regression re-

siduals. 

 

5. Robustness checks 
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  As robustness checks on the long-run risk effect, we use sample variance and TARCH(1,1), 

respectively, to estimate the variance terms in our regression equation. We check only for the 

case of the yearly-rebalanced value minus growth portfolio because the long-run risk effect is 

more relevant for that portfolio, given the results shown in Figure 1 and Table 9. The regres-

sion results are shown in Table 10, using sample variance and TARCH(1,1), respectively. 

When we test the long-run risk effect in terms of model 1, the constant term is significant ei-

ther using sample variance (p<0.01) or TARCH (p<0.01). The magnitudes of the constant are 

0.015 using sample variance and 0.014 using TARCH. These are close to the estimated con-

stant using GARCH(1,1). Hence, the long-run risk effect is robust concerning the estimation 

method of variance. 
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Table 10 Regression results: Sample variance versus TARCH(1,1) 

Sample variance TARCH(1,1) 

 Model 1 Model 2 Model 1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.015 3.285 0.001 0.016 2.010 0.046 0.014 2.999 0.003 0.011 1.327 0.186 () -1.018 -1.614 0.108    -1.345 -1.726 0.086    () 0.550 0.830 0.407    1.069 1.300 0.195    ()    0.231 0.953 0.342    1.253 0.883 0.378 ()    -0.059 -0.231 0.817    -1.062 -0.820 0.413 ()()     -0.144 -2.481 0.014    -0.148 -1.491 0.137 ()()     0.103 2.101 0.037    0.126 1.426 0.155 

R-squared 0.014 R-squared 0.054 R-squared 0.012 R-squared 0.030 

Adjusted R-squared 0.006 Adjusted R-squared 0.039 Adjusted R-squared 0.004 Adjusted R-squared 0.014 

Durbin-Watson stat 2.068 Durbin-Watson stat 2.101 Durbin-Watson stat 2.092 Durbin-Watson stat 2.105 
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Note: Models 1 and 2 are as follows:  

Model 1:  =  + () + (()) + ,                      (18) 

Model 2:  =  +  () + () + ()() +  ()() + .                        (19) 

The dependent variables, is the monthly return on value minus growth stocks in yearly rebalanced portfolios. 

Variances (explanatory variables) are estimated using sample variance and TARCH(1,1), respectively. We use 

HAC standard errors and covariance (Bartlett kernel, Newey-West fixed) to correct for heteroscedasticity of 

regression residuals. 

 

6. Expected payoff and return 

So far, our empirical analysis has been on the simple relation between risk and return. 

However, as can be seen in (4), return is also affected by expected payoff growth and risk. 

Using (8), let us rewrite (4) as 

  =  	  − 		[].                                     (20) 

 

Equation (20) requires that we control the effect of expected payoff growth to assess the ce-

teris paribus effect of risk on return in our regression. Considering the effect of expected pay-

off on return, we revise our specifications, (18) and (19) as follows: 

  =  +  + () + () + ,                     (21) 

 =  +  +  () + () +  ()() +  ()() + .      (22) 

 

where  is again the net return at time t, and  is the expected payoff (net) growth 
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over the period of time t to time t+1. We use specifications (20) and (21) for the value minus 

growth portfolio.  

  We have drawn (20) and (21) from the single Euler equation, (1). The constant terms and 

the time-varying risk terms in (20) and (21) pick up the partial effects of risk, holding the ex-

pected payoff  fixed. These risk effects (i.e., the constant long-run risk effect and the 

time-varying risk effect ) work through by depressing the current stock price , given the 

expected payoff . The expected payoff growth term  in (20) and (21) picks up the 

partial effect of the expected payoff ,  holding the risk level fixed. 

We measure  by an equally weighted average of the operating profit growth and the net 

profit growth of the value and growth firms, respectively. The operating profit is earnings be-

fore interest and taxes (EBIT), while the net profit is after interest and taxes.  Since  is 

an expected value of future profit growth, we estimate  assuming an AR(2) process for . (footnote 4)  

Table 11 reports the summary statistics of monthly  of the value firms and the growth 

firms for the period of 2000 – 2020. The statistics are computed using both the operating 

profit growth and the net profit growth for . Both are nominal figures, which are not price-

deflated. Profit data are available on a quarterly basis. We convert  from quarterly to 

monthly data by an intra-quarter interpolation. The value and growth firms are yearly re-

balanced. 

Certain firms (e.g., low BM ratio’s firms) are named “growth firms” because profits of 

those firms are supposed to grow faster in the future. Contrary to this conventional wisdom, 

Table 11 shows that the value firms performed a higher profit growth than the growth firms 

over the sample period of 2000-2020 in the Korean market. The mean growth rate is 4.77% 

for the value firms and 1.55% for the growth firms when  is the operating growth. The 

mean growth rate is 10.48% for the value firms and -7.02% for the growth firms when  is 

the net profit growth. The difference in sample means may not be a good measure of the dif-

ference in expected growth between the value firms and the growth firms, due to either irra-

tional expectations or rare events as pointed out in Pastor and Veronesi (2007). However, it is 

not an exceptional observation that the value firms exhibited faster growth rates than the 

growth firms in the Korean market. Chen (2017) reported that in yearly rebalanced portfolios, 
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dividends of value stocks had grown faster than those of growth stocks in the U.S. market. 

 

Table 11 Summary statistics of monthly profit growth of value and growth firms 

 Operating profit growth Net profit growth 

 Value Growth Value Growth 

Mean 0.0477 0.0155 0.1048 -0.0702 

Maximum 5.9846 0.3212 5.9966 0.2960 

Minimum -7.9161 -0.5372 -2.9233 -5.0968 

Std. Dev. 1.2784 0.0959 1.0177 0.4840 

Note: Operating profit is earnings before interest and taxes (EBIT). Net profit is earnings after interest and 

taxes. The firms in Korea release profit data on a quarterly basis. We converted the quarterly data into the 

monthly figures using an intra-quarter interpolation.   

Now we want to check the robustness of our results when we control for the effect of ex-

pected payoff growth on return in our regression. Table 12 reports the regression results of 

(20) and (21) for the yearly- rebalanced value minus growth portfolio. We choose this yearly-

rebalanced portfolio because the long-run risk effect of which is more significant as discussed 

before. Table 12 show the results when the operating profit growth and the net profit growth 

are used for , respectively. The variance terms are estimated using sample variance. As 

seen in Table 12, the constant coefficients are positive and significant in model 1 (p<0.01) 

and model 2 (p<0.1). The magnitudes are pretty close to the unconditional mean of value mi-

nus and growth return as shown in Panel D of Table 1. The constant terms in (20) and (21) 

pick up the long-run risk effect. The time-varying risk effect is reverted with a time lag in 

models 1 and 2, i.e.,  < 0 and  > 0 in (20), and  < 0 and  > 0 in (21). The 

fractional non-diversifiable risk variable in model 2 is significant at time t (p<0.05) and time 

t-1 (0.05), but the other risk coefficients are not significant. The operating and the net profit 
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growth variables are not significant both in models 1 and 2. Table 12 and Panel C of Table 9 

show that the R-squareds do not increase when we include the profit growth variables as an 

additional explanatory variable to explain the variation in the value minus growth return. An 

upshot is that the effects of the long-run risk and the time-varying risk remain unaltered and 

are robust when we control for the effect of expected payoff growth in our regression of the 

return on risk. 
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Table 12 Regression results of (20) and (21)  
 Operating Profit Growth Net profit Growth 
 Model 1 Model 2 Model 1 Model 2 

Variable Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. Coefficient t-Statistic Prob. 

C 0.0148 3.3045 0.0011 0.0151 1.8509 0.0654 0.0144 3.1592 0.0018 0.0148 1.8373 0.0674  -0.0025 -0.3727 0.7097 0.0004 0.0662 0.9472 0.0012 0.1939 0.8464 0.0024 0.4023 0.6878 [()] -1.0333 -1.4070 0.1607    -0.9584 -1.4795 0.1403    [()] 0.6322 0.9075 0.3650    0.5770 0.8637 0.3886    []    0.2540 0.9816 0.3273    0.2598 1.0540 0.2929 []    -0.0007 -0.0029 0.9977    0.0046 0.0185 0.9853 	[() ]    -0.1430 -2.4537 0.0148    -0.1440 -2.4873 0.0135 	[() ]    0.0966 1.9770 0.0492    0.0958 1.9630 0.0508 

 
R-squared         0.0140 
Adjusted R-squared  0.0020 
Durbin-Watson stat         2.0378 

R-squared         0.0539 
Adjusted R-squared         0.0345 
Durbin-Watson stat    2.0732 

R-squared         0.0133 
Adjusted R-squared         0.0012 
Durbin-Watson stat   2.0287 

R-squared     0.0546 
Adjusted R-squared     0.0353 
Durbin-Watson stat      2.0694 

Note: Models 1 and 2 are as follows: 

Model 1:  =  +  + () + (()) + ,                                        (21) 

Model 2:  =  +  +  () + () +  ()() +  ()() + .                        (22)  is the monthly returns on value minus growth stocks.  is the expected growth of the operating (net) profit growth, over the period of t to t+1. We rebalance value 

stocks and growth stocks yearly. Variances (explanatory variables) in month t are estimated using sample variance, i.e., the sum of the daily squared returns in month t. We 

use HAC standard errors and covariance (Bartlett kernel, Newey-West fixed) to correct for heteroscedasticity of regression residuals. 
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7. Contribution and suggestion 

   There are two value premium arguments in the literature: The first is that the value pre-

mium is an anomaly in the stock market (referred to as the value premium puzzle in the lit-

erature) because it is an alpha effect, but not a beta effect of the CAPM. This argument was 

backed by the empirical studies in which the data over the post-1963 period were used (e.g., 

Fama and French, 1992). The second one is that the value premium is not an anomaly be-

cause it is a beta effect but not an alpha effect of the conditional CAPM, which accounts for 

the time-varying beta or market risk premium. This argument was supported by the empirical 

studies in which the data over a long horizon of 1926-2001 were used (e.g., Ang and Chen, 

2007; Bai, et al., 2019). 

 Our study has shown that the value premium was not an anomaly because it was a market 

risk effect. In this respect, our model follows suit the conditional CAPM argument in the lit-

erature. However, our model is significantly different from the literature in accounting for the 

cause of value premium in terms of market risk effect. In our model, the value premium was 

due to the constant long-run risk effect, while it was due to the time-varying risk effect in the 

literature. In our model, the time-varying risk effect was reverted with a time lag, and hence 

the temporal effect was negligible when aggregated in time. It is because the first negative 

effect of risk on return negates the second positive effect of risk. In the conditional CAPM 

literature of value premium, the first negative effect of the time-varying risk on return was 

omitted. On a continuum time basis, the risk does not raise (expected) return without lower-

ing it first. This first fall and rise later phenomena in the stock market were apparently ob-

served in crisis periods. In short, the alpha (constant term) effect is indeed a market risk effect 

and persistent. The time-varying risk effect is a market risk effect too, but only transient. Our 

analysis sheds light on resolving the value premium puzzle and thereby contributes to the lit-

erature. 

We have also shown in Figure 1 that the frequency of rebalancing mattered for the accu-

mulated return on the value strategy. Our analysis suggested that it was probably due to the 

difference in the long-run risk effect across different rebalancing frequencies. Our analysis 

arbitrarily chose month, quarter, six months and year, respectively, for the investors’ holding 

period of portfolios before they rebalanced their portfolios. How often should the investors 
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rebalance their portfolios to maximize the value minus growth return? To put it another way, 

how long should the investors hold their portfolios to be most compensated for their assum-

ing risk before they rebalance their portfolios? To search for such an optimal frequency on a 

trial and error basis is an insurmountable task. We think that this is what AI and big data can 

do for investment analysis. Tobek and Hronec (2020) is a related study in the literature. We 

can crunch the data in countless ways by applying machine learning and deep learning to big 

data. We suggest that further research along the line be conducted. This is also a challenging 

issue in the investment community. 

 

8. Concluding Remarks 

  Reworking the Euler equation, we have shown that the time-varying risk effect on return is 

reverting: An increase in risk lowers return first before it raises (expected) return. The second 

effect negates the first effect, and thereby, the temporal effect of the time-varying risk effect 

on return is negligible when aggregated in time. Growth stocks may outperform value stocks 

for some periods and vice versa for other periods. However, the long-run risk effect on return 

exists at a steady state where risk is time-invariant. Indeed, the alpha effect is a market risk 

effect. The implication is that a riskier asset earns a higher average return over a long horizon. 

   Based on the Korean stock market data throughout 2000-2020, our preliminary study has 

shown that the means and standard deviations of value stocks were greater than those of 

growth stocks, respectively, indicating that value stocks are riskier than growth stocks. These 

findings are, in fact, consistent with other studies in the literature (e.g., Ai and Kuku, 2013; 

Ang and Chen, 2007: Bai et al., 2019). Our regression analysis has shown that the time-

varying risk effects on the returns of the value, the growth, and the value minus growth stocks 

were reverting and significant. However, an interesting result is that the long-run risk effect 

on risk depended on the frequency of rebalancing value stocks and growth stocks. Since the 

time-varying risk effect on return is negated over time, the long-run risk effect plays a crucial 

role in determining the accumulated return on value minus growth stocks. Our study has 

shown that the value strategy's long-term investment performance was better for the bi-

annually- and the yearly-rebalanced portfolios than the monthly- and the quarterly-rebalanced 

portfolios, respectively. It suggested that for the investors to benefit from the long-run risk 
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effect, they needed to hold the value minus growth portfolio for several months before re-

balancing the portfolio. 

In our empirical analysis, we arbitrarily chose the rebalancing periods i.e., month, quarter, 

six months, and year. To search for the optimal frequency on a trial and error basis is an in-

surmountable task. We think that this is what AI and big data can do for investment analysis. 

We can crunch the data in countless ways by applying machine learning and deep learning to 

big data. Hopefully, we may search for an optimal frequency to maximize the value minus 

growth return. 

Some authors have recently found that it was premature to call value strategy dead (e.g., Blitz 

and Hanauer, 2021: Israel et al., 2021). Our results suggest that the value strategy is still valid 

as long as the long-run risk effect exists.  

<Appendix A>  

  We will show how a steady-state long-run risk could affect return using the Euler equation. 

We divide (1) by  to obtain that  

() =  +  ( , 	)    

Assuming that the investor’s utility is quadratic and accounting for heteroscedasticity, we ob-

tain that () =  + ()                                    (A1) 

At a steady-state in the long-run, we replace () and () by their unconditional 

ones to obtain (10). 

<Footnote> 

1. For example, see Cochrane. The one-period Euler equation is a static model as the 

Sharpe-Lintner CAPM is so. Since we are studying a time-varying risk and return relation in 

our paper, we consider (1) a conditional version of the Euler equation as the conditional 

CAPM is a conditional version of the Sharpe-Lintner CAPM.   

2. Even though we use the quadratic utility function for its simplicity in a mean-
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variance framework in finance, it has a drawback because of its increasing absolute risk aver-

sion. Generally speaking, if ’() is concave in , [’()] decreases in the variance 

of 	due to Jensen’s Inequality. 

3. Elton (1999) discussed alternative ways to measure expected return in the stock 

market. 

4. We obtained similar results assuming an AR(1) process for . 
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