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I. Introduction 

    

In recent 10 years, one of the most important issues is concerned about discontinuous jump volatility on 

financial assets such as exchange rates. In 2000’s, the jumps of Euro/Dollar exchange rates frequently occurred 

especially right before and after, or during world financial crisis in years 2007-2008. The US Dollar exchange 

rate per Euro was 0.9523 on January 1, 2001, 1.3103 on January 10, 2005, 1.4729 on August 15, 2008, 1.4134 

on November 26, 2008, 1.3412 on September 24, 2010 and 1.4453 on April 29, 2011, respectively. On March 5, 

2015 the US Dollar exchange rate per Euro decreased at large and became 1.0963 due to serious the EU 

economic situation. On August 3, 2017 the US Dollar exchange rate per Euro was 1.0569, however, the US 

Dollar exchange rate per Euro increased and was 1.2192 on March 1, 2018 and was 1.1429 on 8 October 2018.  

The uncertainty of key exchange rates such as US Dollar/Euro exchange rates may lead decrease world 

trade seriously and thus may influence the world economy. Since the volatility of Dollar/Euro exchange rates is 

connected to the EU and U.S economy, the volatility and jumps of Dollar/Euro exchange rates have seriously 

influenced on the world economy as well as the EU and US economy. Hence, it is so important to estimate the 

volatility and jumps of Dollar/Euro exchange rates. 

Given this backdrop the central questions we seek to answer in our study are as follows: how to correctly 

estimate the exchange rate volatility and jumps in the Dollar/Euro exchange rates in the recent 2010’s? To what 

extent or how often do jumps occur? Finally, what is probability of jump occurrence? These questions need to 
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be examined by appropriate efficient and robust jump estimation methods and by analyzing the volatility. An 

important question, often left unaddressed, is whether one should incorporate jumps also in the volatility 

process or not. In this regard, the effectiveness of estimation of volatility has been tested in different ways, 

focusing on the volatility of the exchange rate and jumps. 

Before 2000’s, the parametric approaches such as ARCH models and stochastic volatility models have been 

mainly used. They rely on explicit functional forms which cannot be inherently exactly specified. The 

parametric models are almost impossible to explain the discontinuous jump parts of intraday return volatility. 

Furthermore, as shown in Dewachter et al. (2014), Gaussian quasi-maximum likelihood estimates of GARCH 

models, subject to the presence of additive jumps, tend to overestimate the volatility for the days following the 

jumps, and produce also upward-biased estimates of long-term volatility. 

To overcome these drawbacks of the parametric approach, in recent years Andersen, Bollerslev, Diebold 

and Labys (2001, 2003), Andersen, Bollerslev, Diebold (2002, 2004), Barndorff-Nielsen and  Shephard (2005a, 

2005b, 2006) introduce and develop the nonparametric approaches which used the high frequency daily and 

intraday asset returns data. Since it is almost impossible to analyze the discontinuous jumps in the volatility of 

US dollar/Euro exchange rates, we use a modified version of the non-parametric approach like Andersen, 

Bollerslev, and Diebold (2004, 2007), Huang and Tauchen (2005) and Lee and Mykland (2008).  

However, these previous studies do not account for the presence of intraday volatility periodicity. As Boudt, 

Croux and Laurent (2011b) argued, disregarding this of intraday volatility periodicity leads to seriously 

influence on the accuracy of the estimated jump statistics and jump detection. 

Hence, this paper uses a nonparametric realized volatility model to explain the discrete jumps as well as 

continuous volatility of Dollar/Euro exchange rates so that this paper introduces and analyzes the realized 

volatility and relative jump models. Our research topics in this paper are reliable estimates and inferences on 

the volatility and jump occurred frequently since year 2010, this paper focuses on finding out jumps in 

Dollar/Euro exchange rates and discontinuous jump probabilities during 2010-2018.  

The remainder of the paper is as follows. Section II provides the previous literature survey. Section III 

introduces the realized volatility and jump statistics which consider the periodicity filter of volatility. Section 
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IV explains the high frequency data used in this paper and the empirical results of several jump statistics 

associated with jump probabilities. Section V summarizes and concludes empirical findings. 

 

II. Literature Review 

 

III.  Volatility and Jump Model  

 

1.  Realized Volatility 

    Let's consider the following Brownian Semimartingale Process with jumps for the logarithmic price at 

time t, p(t) in the equation (1). In the equation this paper disposes of T days of M equally spaced intraday 

returns and denotes the j-th intraday return of day t by . M represents the observed intraday sampling 

frequency１. 

   The daily realized volatility is defined as the summation of realized intraday squared returns following the 

works of Barndorff-Nielsen and Shephard (2004a), Bollerslev, Kretschmer, Piorsch, and Tauchen (2005) in this 

paper. Thus, for Δ→0, the daily realized volatility or variation of day t(RVt) is represented the summation of 

very frequently intraday realized squared variation in equation (1) 

                                                    (1) 

The daily realized volatility converges to the increment of the quadratic variation process as the sampling 

frequency(M) of the underlying returns goes to the infinity or ((1/M)≡Δ) goes to the zero as Andersen and 

Bollerslev, and Diebold (2007) pointed out. In reality, however, the jumps in exchange rates occurred 

occasionally and the occurrence of jumps is generally assumed to follow a Poisson which is a continuous-time 

discrete process that the realized volatility inherits the continuous sample path process and the discrete jump 

process. In the presence of jumps, the realized volatility is no longer a consistent estimator of integrated 

volatility. Thus, for , the daily realized volatility at the day t converges in probability the sum of 

continuous integrated variance and the daily summation of discrete N jumps of size of κt, as in equation (2).   

                                                (2) 

   This method is particularly built upon the theories of the realized Bipower variation (BVt) which 

Barndorff-Nielsen and Shephard (2004a, 2004b, 2006) developed. The realized Bipower variation(BVt) 

                                           
１. Refer Andersen, Bollerslev, and Diebold (2007), Yi(2014) and Huang and Tauchen (2005)  
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converges in probability to integrated variation, as  or M goes to be sufficiently large. Bipower 

variation(BVt) is robust to jumps because it uses the product between two consecutive returns instead of the 

squared return.  											 =	 ( )∑ ,|,| .                         (3) 											 lim→ = ∫ () . 

 

2. Volatility Periodicity Filters    

    

 As Boudt, Croux and Laurent (2011a) proposed, the high frequency return variance  has a periodic 

component  due to weekly cycle of opening, lunch and closing times of financial centers. However, the 

previous studies such as Barndorff-Nielsen and Shephard (2004a), Andersen and Bollerslev and Diebold 

(2007), did not consider the periodicity of volatility. Thus, this paper adopts the nonparametric estimators in the 

presence of jumps using periodicity. To identify the periodicity factor   for the average variance of day t, 

the squared periodicity factor has mean one over local window.  

We can use this estimator of standard deviation since it is efficient only in the absence of jumps. We, however, 

cannot use this estimator in the presence of jumps since the observation can be affected by the jump which 

makes the periodicity estimate arbitrarily large.  

Firstly, following a variety of filters proposed by Boudt, Croux and Laurent (2011a, 2011b), this paper adopts 

the median absolute deviation (MAD). Then, the MAD estimator for the periodicity factor equals 

                                                     (4)  

 

Second, this paper adopts the Shortest Half scale estimator as efficient as the MAD under normality, 

proposed by Rousseeuw and Leroy (1988) because the Shortest Half scale estimator is consistent in the 

presence of infinitesimal contaminations by jumps in the data. Importantly, according to them, it has the 

property of smallest maximum bias possible which the estimator for which jumps can cause among a wide class 

of scale estimators. Also it is computationally convenient and does not need any location estimation. Then, the 

Shortest Half estimator(ShortH) for the periodicity factor equals  
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                                                    (5) 

                                
   Boudt, Croux, and Laurent (2011a, 2011b) showed that a better trade-off between the efficiency of the 

standard deviation under normality and the high robustness to jumps of the shortest half dispersion is offered by 

the standard deviation applied to the returns weighted in function of their outlyingness. Then, the estimator for 

the periodicity factor under the weighted standard deviation (WSD) estimate equals  

  
                (6)  

where the factor 1.081 is needed to ensure consistency of the estimator under normality.  

 

3. Outlyingness Daily Jump Statistic using Gumbel Distribution 

 

While most previous studies such as Barndorff-Nielsen and Shephard (2005a, 2005b, 2006), Huang and 

Tauchen (2005) and Andersen, Bollerslev, Diebold (2004, 2007), and Yi(2014) adopted Z-type jump statistics 

of the standard normal distribution, we use Outlying Weighted Quarticity jump statistic dt,i which measures the 

local outlyingness of intra-day i-th return of date(rt,i) like Lee and Mykland (2008),  

 												, = (,,).                                       (7)  

where dt,i measures the local outlyingness of intra-day i-th return of date(rt,i) and σ is the estimator of 

instantaneous volatility. The outlyingness measure dt,i can be used for a statistic for daily jump detection. Under 

the null of no jump during day t, .  follows a Gumbel 

distribution under the null. More specifically, we reject the null of no jump during day t at the α% critical level 

if  

 

 ,                                        (8) 

 . 
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where G-1(1 - α) is the (1 - α) quantile function of the standard Gumbel distribution. When n = M or n = MT, the 

expected number of spurious (daily) detected jumps respectively equals αT and α.  

 

4. Max Outlyingness Daily Jump Statistics with Periodicity Filters 

 

(1) max outlyingness jump statistic without Periodicity Filters   

Firstly, when we do not include the periodicity filter, we can use max outlyingness as the jump statistics. 

 

                           (9) 

  

(2) max outlyingness daily jump statistic with Periodicity Filters 

Secondly, when we include the periodicity filters such as MAD, ShortH and WSD, we can use max 

outlyingness as the daily jump statistics as follows. 												 ,		 = 	 ,,.., ,̂,  	  ,            (10) 

										  ,		 = 	 ,,.., ,̂, 		,          (11) 

										 ,		 =	 	 ,,.., ,̂,   .              (12) 

 

5. Intraday Jump tests with Periodicity Filter 

 

If a return contains a jump component, it should be abnormally big. In times of high volatility, an abnormal 

return is bigger than an abnormal return in times of low volatility. Hence, they use the ratio of the tested return 

over a measure of local volatility. The intraday jump statistic IDJt,i tests whether a jump occurred between 

intraday time periods i-1 and i of day t. It is defined as the absolute return divided by an estimate of the local 

standard deviation , i.e. 

 

           .                                                     (13) 

 

(1) Intraday Jump tests without Periodicity Filters  
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  Under the null of no jump at the testing time, that the process belongs to the family of Brownian Semi-

Martingale Jump models, and a suitable choice of the window size for local volatility, asymptotically follows a 

standard normal distribution. We can replace the local variance  by .   

                                                        (14) 

 

 (2) Intraday Jump tests with Periodicity Filters using Gumbel Distribution 

However, if we ignore the periodic volatility patterns, it leads to spurious jump identification. Boudt, Croux, 

and Laurent (2011b) propose to account for the strong periodicity in volatility and show that replacing the local 

variance  by  (where ) is more appropriate.  

In this paper, to consider periodic volatility patterns we will use the three robust nonparametric estimators 

such as and  to estimate   and jumps statistics as follows: 

 

       ,                                              (15)    

 ,                                              (16) 

  .                                             (17) 

 

Under the null of no jump and a consistent estimate ,  follows the standard normal distribution 

which has the absolute value. If the statistic exceeds a plausible maximum, one rejects the null of no jump. 

When Δ → 0, the sample maximum of the absolute value of a standard normal variable (i.e. the jump statistic 

) follows a Gumbel distribution under the assumption of no jump in the interval i – 1, i of day t. Hence, 

we reject the null of no jump if 

 

 ,                                             

 .                           (19) 

 

 When n = M (i.e. number of observations per day) and n = MT(i.e. total number of observations), this number 

equals respectively αT and α(i.e. ≈ 0). So if we choose a significance level of α, then we reject the null of no 
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jump at testing time if . 

  

  IV. Empirical Results  

 

1. Data 

   The empirical analysis is based on data from Olsen and Associates in Zurich, Switzerland. The data set 

consists of five minute observations on US dollar/Euro exchange rate from February 1, 2010 to February 28, 

2018. The all volatility measures are based on the five minute returns as the first difference of the logarithm of 

US dollar/Euro exchange rate, which results in total of M(=	∆)=265 high frequency return observations per day. 

When we have five minute interval per day, we have (∆	= 1/265).  

After removing holidays and other inactive trading holidays, we have a total of 2,529 days. The corresponding 

daily returns of US dollar/Euro for 2,529 days can be represented as 

 t= 1, 2, , 2,529. Thus this paper has a total of 

670,185(=2,529 X 265) sample observations. 

  

2.  Max Outlying  Daily Jump Statistic with Filters  

     This section examines the Max outlying  jump statistic with several periodicity filters instead of Z 

–type jump statistics in the previous studies such as Barndorff-Nielsen and Shephard (2005a, 2005b, 2006), 

Huang and Tauchen (2005), Yi(2014), and Andersen, Bollerslev, and Diebold (2004, 2007). Also we classify 

jump statistics into using the intraday periods(n=M) and using intraday observations(n=MT).  

 

1) Intraday observation case  

   To obtain the Max outlyingness jump statistics, we use the n=670,185  intraday observations of US 

dollar/Euro during February 1, 2010 to February 28, 2018. The <Table 1> reports the jumps statistics at 

=0.900, =0.995 and =0.999 significant levels. It reports the jump detection probability with returns with the 

no periodicity window and filters using intra-day periods for the maximum outlying jump statistics.  

  

<Table 1> Max Outlying Daily Jump Probability using filters: intraday observations(n=670185)  

a.( =0.999)     

critical value 6.15219 6.15219 6.15219 6.15219 

Expected Jumps under Ho=no 
jump 

0.001 0.001 0.001 0.001 

detected number of jumps 1207 774 784 632 
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probability of jumps 0.477264 0.30605 0.310004 0.249901 

b.( =0.995)     

critical value 5.84109 5.84109 5.84109 5.84109 

Expected Jumps under Ho=no 
jump 

0.005 0.005 0.005 0.005 

detected number of jumps 1338 886 884 709 

probability of jumps 0.529063 0.350336 0.349545 0.280348 

c.( =0.990)     

critical value 5.70679 5.70679 5.70679 5.70679 

Expected Jumps under Ho=no 
jump 

0.01 0.01 0.01 0.01 

detected number of jumps 1413 929 939 739 

probability of jumps 0.558719 0.367339 0.371293 0.29221 

 

At the significant level =0.995( =5.84109), according to the maximum outlying jump statistics with the 

no periodicity window, 1,338 significant jumps occurred during 2010-2018 with the proportion of 52.91%. 

According to the jump detection probability with filtered returns with the MAD periodicity, 886 significant 

jumps occurred during 2010-2018 and the proportion of days with significant jumps appeared to be 35.03%. 

With the Shortest Half Scale periodicity filter, 884 significant jumps occurred during 2010-2018 and the 

proportion of days with significant jumps appeared to be 34.95%. With the WSD filter, 709 significant jumps 

occurred during 2010-2018 and the proportion of days with significant jumps appeared to be 28.03%. 

 

 2) Intraday period case   

   Now we obtain the max outlyingness jump statistics of US dollar/Euro exchange rates using 265 intraday 

periods instead of using intraday observations during February 2010 through February 2018. The <Table 2> 

reports the jump detection probability with filtered returns with the no periodicity window and several filters 

using intra-day periods for the maximum outlying jump statistics at =0.900, =0.995 and =0.999 

significant levels.   

When =0.999( =4.97961), with no periodicity window 1,697 significant jumps occurred with the 

proportion of 67.10%. According to the jump detection probability with filtered returns with the MAD 

periodicity, 1,246 significant jumps occurred during 2010-2018 and the proportion of days with significant 

jumps appeared to be 49.27%. With the Shortest Half Scale periodicity filter, 1,243 significant jumps occurred 

during 2010-2018 and the proportion of days with significant jumps appeared to be 49.15%. With the WSD 

filter, 1,000 significant jumps occurred during 2010-2018 and the proportion of days with significant jumps 
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appeared to be 39.54%. 

According to the maximum outlying jump statistics, at the significant level =0.995( =4.49723), with the 

no periodicity window 1,891 significant jumps occurred among 2,529days during 2010-2018 and the 

proportion of days with significant jumps appeared to be 74.77%. However, as shown in the jump detection 

probability with filtered returns with the MAD periodicity, 1,517 significant jumps occurred and the proportion 

of days with significant jumps appeared to be 59.98%. With the Shortest Half Scale periodicity filter, 1,515 

significant jumps occurred during 2010-2018 and the proportion of days with significant jumps appeared to be 

59.90%. With the WSD filter, 1,197 significant jumps occurred during 2010-2018 and the proportion of days 

with significant jumps appeared to be 47.33%.  

Thus, when we use periodicity filters, the numbers of jumps occurrence and the proportion of days with 

significant jumps appeared smaller. While one jump of US dollar/Euro exchange rates occurred about per 1.50 

days with no periodicity filter, when we use periodicity filters, the jumps occurred about per 2 days at =0.999 

 

<Table 2> Max Outlying Daily Jump Probability using filters: intraday period 

a.( =0.999)     

critical value 4.97961 4.97961 4.97961 4.97961 

Expected Jumps under Ho=no 
jump 

2.529 2.529 2.529 2.529 

detected number of jumps 1697 1246 1243 1000 

probability of jumps 0.671016 0.492685 0.491499 0.395413 

b.( =0.995)     

critical value 4.49723 4.49723 4.49723 4.49723 

Expected Jumps under Ho=no 
jump 

12.645 12.645 12.645 12.645 

detected number of jumps 1891 1517 1515 1197 

probability of jumps 0.747726 0.599842 0.599051 0.47331 

b.( =0.990)     

critical value 4.28898 4.28898 4.28898 4.28898 

Expected Jumps under Ho=no 
jump 

25.29 25.29 25.29 25.29 

detected number of jumps 1953 1631 1624 1304 

probability of jumps 0.772242 0.644919 0.642151 0.515619 

 

3.  Intraday Jump Test 
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  This section examines and compares the intraday jump probability instead of daily jump probability without 

considering periodicity filter cases and with considering periodicity filter cases. Also we classify jump statistics 

into using the intraday periods(n=M=265) and using intraday observations(n=MT=670,185).  

 

1) Intraday observations case  

   To obtain the intraday jump statistics, we use the n=670,185 intraday observations of US dollar/Euro during 

February 2010 through February 2018. <Table 3> reports the jumps statistics at =0.900, =0.995 and 

=0.999 significant levels. It reports the intraday jump detection probability with returns with the no periodicity 

window and filters using intra-day observations for the intraday jump statistics.  

 

<Table 3> Intraday Jump Probability using Local Robust Variance: Intraday observations 

a. ( =0.999)     

Critical value, i.e. G(Beta)*Sn+Cn 6.15219 6.15219 6.15219 6.15219 

Number of detected jumps 698 683 682 528 

Proportion of detected jumps 0.0010415 0.00101912 0.00101763 0.000787842 

Number of periods (typically days) with 
at least one significant jump 

579 516 516 403 

Proportion of periods with at least one 
significant jump 

0.228944 0.204033 0.204033 0.159352 

Expected number of spurious detected 
jumps (under H0=no jumps) 

0.001 0.001 0.001 0.001 

b.( =0.995)     

Critical value, i.e. G(Beta)*Sn+Cn 5.84109 5.84109 5.84109 5.84109 

detected number of jumps 867 796 784 624 

Proportion of detected jumps 0.00129367 0.00118773 0.00116983 0.000931086 

Number of periods (typically days) with 
at least one significant jump 

694 581 578 458 

Proportion of periods with at least one 
significant jump 

0.274417 0.229735 0.228549 0.181099 

Expected number of spurious detected 
jumps (under H0=no jumps) 

0.005 0.005 0.005 0.005 

c. ( =0.990)     

Critical value, i.e. G(Beta)*Sn+Cn 5.70679 5.70679 5.70679 5.70679 

Number of detected jumps 957 860 855 672 

Proportion of detected jumps 0.00142796 0.00128323 0.00127577 0.00100271 
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Number of periods (typically days) with 
at least one significant jump 

751 619 619 484 

Proportion of periods with at least one 
significant jump 

0.296955 0.244761 0.244761 0.19138 

Expected number of spurious detected 
jumps (under H0=no jumps) 

0.01 0.01 0.01 0.01 

 

Firstly, when =0.999( =6.15219), the number of detected jumps with the no periodicity window was 698. 

Among 698 jumps, the number of days with at least one significant jump was 579 among 2,529 days. Thus, 

significant intraday jumps occurred with the proportion of 22.89%.  

 The number of detected jumps was 683 as shown in the jump detection probability with filtered returns with 

the MAD periodicity. At least one significant jump occurred in 516 days during 2010-2018 and the proportion 

of days with significant jumps appeared to be 20.40%.  

With the Shortest Half Scale periodicity filter, the number of detected jumps was 682. The number of days 

with at least one significant jump was 516. The proportion of days with significant jumps appeared to be 

20.40% as the MAD filter case. With the WSD filter, the number of detected jumps was 528. At least one 

significant jump occurred in 403 days during 2010-2018 and the proportion of days with significant jumps 

appeared to be 15.94%. 

Secondly, at the significant level =0.995( =5.84109), the number of detected jumps with the no 

periodicity window was 867. The number of days with at least one significant jump was 694. The significant 

intraday jumps occurred with the proportion of 27.44%. According to the jump detection probability with 

filtered returns with the MAD periodicity, the number of detected jumps was 796. At least one significant jump 

occurred in 581 days during 2010-2018 and the proportion of days with significant jumps appeared to be 

22.97%.  

   With the Shortest Half Scale periodicity filter, the number of detected jumps was 784. The number of 

periods (typically days) with at least one significant jump was 578. The proportion of days with significant 

jumps appeared to be 22.85%. With the WSD filter, the number of detected jumps was 624. At least one 

significant jump occurred in 458 days during 2010-2018 and the proportion of days with significant jumps 

appeared to be 18.11%.  

Thirdly, at the significant level =0.990( =5.70679), the number of detected jumps with the no periodicity 

window was 957. The number of days with at least one significant jump was 751. The significant intraday 

jumps occurred with the proportion of 29.70%.  

 As shown in the jump detection probability with filtered returns with the MAD periodicity, the number of 

detected jumps was 860. At least one significant jump occurred in 619 days during 2010-2018 and the 

proportion of days with significant jumps appeared to be 24.48%. With the Shortest Half Scale periodicity 

filter, the number of detected jumps was 855. The number of periods (typically days) with at least one 
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significant jump was 619. The proportion of days with significant jumps appeared to be 24.48%.  

With the WSD filter, the number of detected jumps was 672. At least one significant jump occurred in 484 

days during 2010-2018 and the proportion of days with significant jumps appeared to be 19.13%. Thus, if we 

do not consider periodicity filters, intraday jump detection probability is much higher than when we consider 

periodicity filters such as MAD, Shortest Half Scale and WSD filters. 

 

2) Intraday period case  

   To obtain the intraday jump statistics, we use the n=265 intraday periods of US dollar/Euro during February 

2010 through February 2018. The <Table 4> reports the intraday jump detection probability with returns with 

the no periodicity window and filters using intra-day periods for the intraday jump statistics at =0.900, 

=0.995 and =0.999 significant levels.   

When =0.999( =4.97961), the number of detected jumps with the no periodicity window was 1,586.  

The number of days with at least one significant jump was 1,091. Thus, significant intraday jumps occurred 

with the proportion of 43.13%. As shown in the jump detection probability with filtered returns with the MAD 

periodicity, the number of detected jumps was 1,395. At least one significant jump occurred in 922 days during 

2010-2018 and the proportion of days with significant jumps appeared to be 36.46%. With the Shortest Half 

Scale periodicity filter, the number of detected jumps was 1,395. The number of days with at least one 

significant jump was 928. The proportion of days with significant jumps appeared to be 36.70%. With the WSD 

filter, the number of detected jumps was 1,089. At least one significant jump occurred in 709 days during 2010-

2018 and the proportion of days with significant jumps appeared to be 28.03%.  

At the significant level =0.995( =4.49723), the number of detected jumps with the no periodicity 

window was 2,259. The number of days with at least one significant jump was 1,383. The significant intraday 

jumps occurred with the proportion of 54.69%. As shown in the jump detection probability with filtered returns 

with the MAD periodicity, the number of detected jumps was 1,974. At least one significant jump occurred in 

1,184 days during 2010-2018 and the proportion of days with significant jumps appeared to be 46.81%.  

With the Shortest Half Scale periodicity filter, the number of detected jumps was 1,982. The number of days 

with at least one significant jump was 1,189. The proportion of days with significant jumps appeared to be 

47.01%. With the WSD filter, the number of detected jumps was 1,557. At least one significant jump occurred 

in 939 days during 2010-2018 and the proportion of days with significant jumps appeared to be 37.13%.  

At the significant level =0.990( =4.28898), the number of detected jumps with the no periodicity window 

was 2,688. The number of days with at least one significant jump was 1,522. The significant intraday jumps 

occurred with the proportion of 60.18%. According to the jump detection probability with filtered returns with 

the MAD periodicity, the number of detected jumps was 2,334. At least one significant jump occurred in 1,335 

days during 2010-2018 and the proportion of days with significant jumps appeared to be 52.79%.  

With the Shortest Half Scale periodicity filter, the number of detected jumps was 2,341. The number of days 



14 

 

with at least one significant jump was 2,341. The proportion of days with significant jumps appeared to be 

53.14%. With the WSD filter, the number of detected jumps was 1,823. At least one significant jump occurred 

in 1,047 days during 2010-2018 and the proportion of days with significant jumps appeared to be 41.40%. 

Thus, if we do not consider periodicity filters, intraday jump detection probability in using intraday period 

also is much higher than when we consider periodicity filters such as MAD, Shortest Half Scale and WSD 

filters. We need to use periodicity filters to get more robust and consistent estimators of volatility jumps and 

jump probabilities of Euro exchange rates unlike previous Barndorff-Nielsen and Shephard (2004a, 2004b, 

2005a, 2005b, 2006), Andersen, Bollerslev and Diebold(2004, 2007) who did not consider the periodicity 

window factors of volatility nor more efficient outlying weighted variances. 

 

<Table 4> Intraday Jump Probability using Local Robust Variance: Intraday period 

a. ( =0.999)     

Critical value, i.e. G(Beta)*Sn+Cn 4.97961 4.97961 4.97961 4.97961 

Number of detected jumps 1586 1395 1395 1089 

probability of jumps 0.00236651 0.00208151 0.00208151 0.00162492 

Number of periods (typically days) 
with at least one significant jump 

1091 922 928 709 

Proportion of periods with at least one 
significant jump 

0.431396 0.364571 0.366943 0.280348 

Expected number of spurious detected 
jumps (under H0=no jumps) 

2.529 2.529 2.529 2.529 

b.( =0.995)     

Critical value, i.e. G(Beta)*Sn+Cn 4.49723 4.49723 4.49723 4.49723 

detected number of jumps 2259 1974 1982 1557 

Proportion of detected jumps 0.00337071 0.00294546 0.00295739 0.00232324 

Number of periods (typically days) 
with at least one significant jump 

1383 1184 1189 939 

Proportion of periods with at least one 
significant jump 

0.546856 0.468169 0.470146 0.371293 

Expected number of spurious detected 
jumps (under H0=no jumps) 

12.645 12.645 4.49723 4.49723 

c. ( =0.990)     

Critical value, i.e. G(Beta)*Sn+Cn 4.28898 4.28898 4.28898 4.28898 

Number of detected jumps 2688 2334 2341 1823 

Proportion of detected jumps 0.00401083 0.00348262 0.00349307 0.00272014 
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Number of periods (typically days) 
with at least one significant jump 

1522 1335 1344 1047 

Proportion of periods with at least one 
significant jump 

0.601819 0.527877 0.531435 0.413998 

Expected number of spurious detected 
jumps (under H0=no jumps) 

25.29 25.29 25.29 25.29 

 

 

V. Conclusion 

 

This paper analyzes the recent realized continuous volatility and discrete jump volatility of US dollar/Euro 

returns using the ultra-high frequency five minute returns spanning the period from February 2010 through 

February 2018. In particular, this paper considers the several periodicity filters such as MAD, Short Half Scale, 

and WSD to obtain more efficient and robust jump estimators. These estimators have the advantage that they 

are little affected by volatility periodicity in exchange rate returns. This paper can find out the followings.  

… 

Thus, when we consider the periodicity filters of volatility such as MAD, Short Half Scale and WSD, the 

five minute returns of US dollar/Euro have considerably smaller daily and intraday jump probabilities. 

Therefore, if we do not consider periodicity filters of volatility, we can have overestimated jump probabilities 

so that we have to consider periodicity filters of volatility to get the more robust estimation of jumps and jump 

probabilities five minute returns of US dollar/Euro.  

However, if we use the longer period but very expensive exchange rate data, we will get more interesting 

rigid analysis. Of course, if we can identify the factors such as economic events and psychology aspects, we 

will get more interesting results in volatility and jumps in Dollar-Euro exchange rates in 2010’s, it goes beyond 

the scope of the current paper and is thus left for future work.  
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