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1 Introduction

Tail risk refers to the risk that an asset or portfolio return belongs to one side of the return

distribution tails. Theories of rational behavior argue that investors place greater weights

on downside risk than upside uncertainty in their utility functions. Such examples include

the lower-partial moment framework (Bawa and Lindenberg, 1977), the loss aversion in their

prospect theory (Kahneman and Tversky, 1979), and the disappointment aversion (Gul,

1991; Routledge and Zin, 2010). Therefore, the asymmetric treatment of downside risk

versus upside uncertainty by investors is not only theoretically grounded but also has led to

the development of new concepts in asset pricing and risk management, like the value-at-risk

(VaR) and the expected shortfall (ES).

A recently emerging literature documents evidence that left tail risk factors play an

important role in explaining return dynamics or variations. For example, Andersen, Fusari,

and Todorov (2015) �nd that the left tail risk is priced but cannot be spanned by market

volatility. In a later paper, Andersen, Fusari, and Todorov (2017) also report that the

negative jump tail risk is not spanned by market volatility and helps predict future equity

returns. Lu and Murray (2018) �nd that the risk of future bear market state is priced in the

cross-section of stock returns. Farago and Tèdongap (2018) suggest three disappointment-

related factors and show that the factors are priced besides the market return and market

volatility.1

It has been well documented that volatility (or variance) risk is not only important in

understanding asset return dynamics or cross-sectional variations but also useful in portfolio

investments or �nancial risk management. The development of the VIX index has signi�-

cantly contributed to the importance of volatility or variance risk from both academics and

practitioners. The VIX index has been widely used since the inception in 1993 and is a

model-free annualized volatility measure implied from stock market index option prices.2

1In less related works, Bakshi, Kapadia, and Madan (2003) �nd that risk-neutral skewness implied from
individual option prices is related with the cross sectional variations of stock returns. Xing, Zhang, and
Zhao (2010) document evidence that the shape of the volatility smirk can signi�cantly predict future equity
return.

2For example, Gonzalez-Perez (2015) o¤ers a survey on various usages of the VIX index in the �nancial
literature.
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For tail risks, however, VIX-like measures are not introduced yet. The success of the VIX

index motivates us to develop similar measures for tail risks. We expect that such measures

would greatly contribute to a more extensive usage of tail risks in various directions. In this

paper, we develop VIX-like model-free tail risk measures implied from stock index option

prices.3 To this end, we use the notion of a VaR swap, which is an over-the-counter contract

that pays one if a prescribed tail risk (i.e., an event that a realized return rate is less than a

prescribed return rate for a given risk level) is realized and zero otherwise. Since VaR swaps

cost zero at entry, the prescribed return rate represents the risk-neutral expected value of

the realized return. We show that the prescribed return rate can be obtained from option

prices in a model-free way. We propose to use the di¤erence between the ex post realized

VaR swap payo¤ and the �xed VaR swap rate to quantify the VaR risk premium. We also

propose the prescribed return rate to quantify the left tail risk. In addition to the VaR,

we also consider similar swaps based on the ES. To elicit information from an asymmetry

between downside risks and upside uncertainty, we also devise alternative swaps using upside

uncertainties corresponding to downside risks measured by the VaR and the ES.

We �nd that both of the average VaR and ES risk premiums are strongly negative, which

implies that investors price tail risks and are willing to accept a signi�cantly negative average

return to hedge tail risks. Next, we run asset pricing regressions of the tail risk premia on

conventional common risk factors and �nd that the tail risk premia are not induced simply

by the underlying return risk and return risk premium but represent an additional source of

risk. We also investigate whether the tail risk premia are time-varying and �nd that while

they are time-varying and correlated with the tail risk indicator level, downside tail risk

premia exhibit a more conspicuous time-varying feature than upside premia.

As the VaR- and the ES-based downside tail risk measures closely co-move with the VIX

index, we investigate whether the downside tail risk measures possess additional information

content. To this end, we devise alternative tail risk indicators by subtracting the VIX-

implied VaR or ES under a normal distribution assumption from the model-free VaR or ES.

3There exists an approach using econometric modelling to estimate time-varying jumps in the tail of asset
return. Refer to, for example, Bollerslev and Todorov (2014). However, this approach di¤ers from ours in
that it does not o¤er model-free estimates.
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In addition, we also devise alternative tail risk indicators as the di¤erence between downside

risk and upside uncertainty based on the VaR or the ES to exploit the asymmetry. Although

the VaR- or the ES-based left tail risk indicators behave similarly with the VIX index, we

�nd that the other alternative tail risk indicators behave di¤erently not only from the VIX

but also each other.

It is well documented that the VIX index rises at a faster rate when the stock market

falls than when it rises. Due to this �leverage e¤ect�, the VIX index is often referred to as

an �investor fear gauge�. We �nd that all of the tail risk indicators also rise at a faster rate

during a market downturn and thus gauge the �investor fear�.

We empirically evaluate the predictive power of tail risk indicators for future stock re-

turns. We �nd that increased current tail risks tend to predict future portfolio return declines.

Although this negative relation between current tail risks and future returns is largely sta-

tistically signi�cant, it is more conspicuous in small-sized stocks than big-sized stocks, and

the predictive power varies across tail risk indicators.

We also empirically assess the forecasting power of tail risk indicators for future tail

events. We show that increased current tail risks tend to predict a higher probability of

future tail risk events. Although the forecasting power varies across tail risk indicators,

the forecasting powers are statistically signi�cant even after controlling for the e¤ect of the

VIX. In addition, we examine whether tail risk indicators possess any predictive power for

future ex ante tail risks and �nd that some tail risk indicators possess signi�cant additional

predictive power.

In related works, Bakshi and Kapadia (2003) use delta-hedged option portfolios and �nd

that the volatility risk premium is negative. Carr and Wu (2008) propose a non-parametric

method to quantify the variance risk premium from option prices. They �nd that the average

variance risk premiums are negative and that the majority of the variance risk premiums is

generated by an independent variance risk factor. This paper is closely related to Carr and

Wu (2008). Consistent with the variance risk, we �nd that tail risk premiums are negative

and time-varying and call for an independent risk factor.

Whaley (2009) documents evidence for the leverage e¤ect, and Bandi and Renò (2012)

extends the analysis to the time-varying leverage e¤ect. We �nd similar leverage e¤ect for
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tail risk indicators.

Banerjee, Doran, and Peterson (2007) show that implied volatility can predict future

portfolio returns. Bollerslev, Todorov, and Xu (2015) �nd that the variance risk premium

helps predict future market returns. Jiang and Tian (2005) provide evidence that implied

volatility is an e¢ cient forecast for future realized volatility. Similar with the evidences

for the information content of the implied volatility, the tail risk indicators also possess

information content which is useful for forecasting not only future returns but also future

realized or ex ante tail risks.

This paper proceeds as follows: Section 2 formally introduces several tail risk swap con-

tracts, derives swap rates and premia, and also introduces several tail risk indicators implied

from the tail risk swap contracts. Section 3 explains the data to be used in the analysis and

the methodology to obtain the tail risk indicators from option prices. In Section 4, several

empirical analyses are conducted for comparing non-parametric and semi-parametric esti-

mates of tail risk indicators, characterizing tail risk premia and indicators, and examining

predictive power of tail risk indicators for future stock return, future tail events, and future

ex ante tail risks. Section 5 concludes.

2 Tail risk swap rates, premia and indicators

In this section, we introduce several swap contracts which exchange uncertain future tail

risks with current �xed costs. We then derive swap rates and premia that are associated

with the tail swap contracts. We also introduce several tail risk indicators implied from the

tail swap contracts.

2.1 Value-at-Risk swap

We use St to denote the time-t spot price of an asset, and Rt;T its continuously compound

return from time t to T; that is, Rt;T � logST � logSt: The negative of the lower (downside)
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�% percentile of Rt;T ; denoted by Dt;T (�) ; is de�ned as

Pr [Rt;T � �Dt;T (�)] = �%: (1)

We consider a value-at-risk (VaR) swap. At maturity, the payo¤ to the long side of the

swap is one if the realized percentile over the life of the contract is less than a prescribed

signi�cance level �-percentile and zero otherwise; the pro�t from the VaR swap contract is

L
�
I (Rt;T � �Dt;T (�))� V aRSWt;T (�)

�
; (2)

where I (�) denotes an indicator function, V aRSWt;T (�) denotes the �xed VaR swap rate that
is determined at time t and paid at time T . Here, a notional amount of the swap contract L

is normalized to be one without loss of generality. The value-at-risk (VaR) swap has zero net

market value at entry. No arbitrage dictates that the VaR swap rate equals the risk-neutral

expected value of the indicator

V aRSWt;T (�) = E
Q
t [I (Rt;T � �Dt;T (�))] ; (3)

where EQt [�] denotes the time-t conditional expectation operator under some risk-neutral
measure Q. As the VaR swap rate V aRSWt;T (�) depends on the threshold level Dt;T (�), we

�x the VaR swap rate V aRSWt;T (�) to be � and determine the VaR swap threshold level

DSW
t;T (�) ; that is,

�

100
= EQt

�
I
�
Rt;T � �DSW

t;T (�)
��
: (4)

We show that the VaR swap threshold level DSW
t;T (�) can be calculated from option prices

of the same horizon T .

Proposition 1 Under no arbitrage, the time-t risk-neutral expected value of the VaR swap
threshold at �% signi�cance level of an asset over horizon [t, T] de�ned in Equation (4) can

be calculated from European out-of-the-money option prices across strikes K > 0 and at the

same maturity T

DSW
t;T (�) = logP

0�1
�
e�r(T�t)

�

100

�
� logSt; (5)
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where P 0�1 (�) denotes the inverse function of the �rst derivative of the European put option
price function P (K) of strike price K; and r denotes the risk-free rate over horizon [t, T].

The proof is provided in the Appendix. While the Breeden-Litzenberger (1978) formula

derives the risk-neutral density function of future asset return from option prices, the density

function is obtained from the second derivative of option price function with respect to strike

prices. The second derivative, however, typically provides oscillating and thus unreliable

densities. Noteworthily, our result, however, can avoid the usage of the second derivative

and is engaged with the �rst derivative, which greatly helps to reduce errors in the estimation.

2.2 Alternative tail risk swaps

2.2.1 Upside swap

If we denote the upper (upside) �% percentile of Rt;T by Ut;T (�) as follows:

Pr [Rt;T � Ut;T (�)] = �%; (6)

Similar with the VaR swap, we also consider an upside (UP) swap. At maturity, the payo¤

to the long side of the swap is one if the realized upper percentile over the life of the contract

is less than a prescribed signi�cance level �-percentile and zero otherwise; the pro�t from

the UP swap contract is

I (Rt;T � Ut;T (�))� UP SWt;T (�) ; (7)

where UP SWt;T (�) denotes the �xed UP swap rate that is determined at time t and paid at

time T . From the no-arbitrage condition, the UP swap rate equals the risk-neutral expected

value of the indicator

UP SWt;T (�) = EQt [I (Rt;T � Ut;T (�))] : (8)

We �x the UP swap rate UP SWt;T (�) to be � and determine the UP swap threshold level

USWt;T (�) ; that is,
�

100
= EQt

�
I
�
Rt;T � USWt;T (�)

��
: (9)
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we can show that the UP swap threshold can be calculated from option prices of the same

horizon T .

Corollary 2 Under no arbitrage, the time-t risk-neutral expected value of the UP at �%
signi�cance level of an asset over horizon [t, T] de�ned in Equation (6) can be calculated

from European out-of-the-money option prices across strikes K > 0 and at the same maturity

T

USWt;T (�) = logC 0�1
�
e�r(T�t)

�

100

�
� logSt; (10)

where C 0�1 (�) denotes the inverse function of the �rst derivative of the European call option
price function C (K) of strike price K; and r denotes the risk-free rate over horizon [t, T].

The proof is provided in the Appendix.

2.2.2 Expected-shortfall swap

The expected shortfall at �% signi�cance level is de�ned as

EDt;T (�) = E [�Rt;T jRt;T � �Dt;T (�) ] =
�100
�

Z �Dt;T (�)

�1
R � fR (R) dR; (11)

where fR (R) denotes the pdf of the log return over [t; T ] :

Now, we consider an expected-shortfall (ES) swap. At maturity, the payo¤ to the long

side of the swap is

�Rt;T � I (Rt;T � �Dt;T (�))� ESSWt;T (�) ; (12)

where ESSWt;T (�) denotes the �xed ES swap rate that is determined at time t and paid at

time T . We �x the ES swap threshold Dt;T (�) as the same with the VaR swap threshold

level DSW
t;T (�) : No arbitrage dictates that the ES swap rate equals the following risk-neutral

expected value:

ESSWt;T (�) = �EQt
�
Rt;T � I

�
Rt;T � �DSW

t;T (�)
��
; (13)

We show that the ES swap rate can be calculated from option prices of the same horizon

T .
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Corollary 3 Under no arbitrage, the time-t risk-neutral expected value of the ES at �%
signi�cance level of an asset over horizon [t, T] de�ned in Equation (11) can be calculated

from European out-of-the-money option prices across strikes K > 0 and at the same maturity

T

ESSWt;T (�) = D
SW
t;T (�) +

100

�

24P
�
Ste

�DSW
t;T (�)

�
Ste

�DSW
t;T (�)

+

Z Ste
�DSWt;T (�)

0

P (K)

K2
dK

35 ; (14)

where DSW
t;T (�) denotes the VaR swap threshold level at �% percentile over [t; T ] ; and P (K)

a European put option price function of strike price K; and r denotes the risk-free rate over

horizon [t, T].

The proof is provided in the Appendix.

2.2.3 Expected upside swap

Similarly, the expected upside at �% signi�cance level is de�ned as

EUt;T (�) = E [Rt;T jRt;T � Ut;T (�) ] =
100

�

Z 1

Ut;T (�)

R � fR (R) dR: (15)

Now, we consider an expected upside (EUP) swap. At maturity, the payo¤ to the long side

of the swap is

Rt;T � I (Rt;T � Ut;T (�))� EUP SWt;T (�) ; (16)

where EUP SWt;T (�) denotes the �xed EUP swap rate that is determined at time t and paid at

time T . We �x the EUP swap threshold Ut;T (�) as the same with the UP swap threshold level

USWt;T (�) : The no-arbitrage condition implies that the EUP swap rate equals the following

risk-neutral expected value:

EUP SWt;T (�) = EQt
�
Rt;T � I

�
Rt;T � USWt;T (�)

��
; (17)

We can show that the EUP swap rate can be calculated from option prices of the same

horizon T .

9



Corollary 4 Under no arbitrage, the time-t risk-neutral expected value of the EUP at �%
signi�cance level of an asset over horizon [t, T] de�ned in Equation (15) can be calculated

from European out-of-the-money option prices across strikes K > 0 and at the same maturity

T

EUP SWt;T (�) = USWt;T (�) +
100

�

24C
�
Ste

USWt;T (�)
�

Ste
USWt;T (�)

+

Z 1

Ste
USW
t;T

(�)

C (K)

K2
dK

35 ; (18)

where USWt;T (�) denotes the UP swap threshold level at �% percentile over [t; T ] ; and C (K)

a European call option price function of strike price K; and r denotes the risk-free rate over

horizon [t, T].

The proof is provided in the Appendix.

2.3 Tail risk premia

It is straightforward to derive tail risk premia from the above tail swap contracts as follows:

� VaR risk premium (VaRrp): The VaRrp is de�ned by

V aRRPt;T (�) = EPt
�
I
�
Rt;T � �DSW

t;T (�)
��
� �; (19)

where EPt
�
I
�
Rt;T � �DSW

t;T (�)
��
indicates the time-series conditional mean of the re-

alized payo¤ to the long side of the VaR swap contract. The average VaR risk premium

is directly estimated by the sample average of the di¤erence between the realized payo¤

and the VaR swap rate:

RV aRRPt;T (�) = I
�
Rt;T � �DSW

t;T (�)
�
� �: (20)

� UP risk premium (UPrp): The UPrp is similarly de�ned as

UPRPt;T (�) = EPt
�
I
�
Rt;T � USWt;T (�)

��
� �: (21)
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� ES risk premium (ESrp): The ESrp is de�ned as

ESRPt;T (�) = EPt
�
�Rt;T � I

�
Rt;T � �DSW

t;T (�)
��
� � � ESSWt;T (�) : (22)

� EUP risk premium: The EUPrp is de�ned as

EUPRPt;T (�) = EPt
�
Rt;T � I

�
Rt;T � USWt;T (�)

��
� � � EUP SWt;T (�) : (23)

2.4 Tail risk indicators

As we �x the tail event probability, time variations of the threshold that determines the

tail risk event would quantity tail risks. We will as tail risk indicators use the thresholds

associated with VaR, UP, ES, and EUP swaps as follows:

� VaR-based tail risk indicator (VaRtr): DSW
t;T (�) :

� UP-based tail risk indicator (UPtr): USWt;T (�) :

� ES-based tail risk indicator (EStr): ESSWt;T (�) :

� EUP-based tail risk indicator (EUPtr): EUP SWt;T (�) :

In addition, the following two indicators represent how much downside risks are greater

than upside uncertainty:

� Down-minus-up tail risk indicator (DMU): DSW
t;T (�)� USWt;T (�) :

� Expected down-minus-up tail risk indicator (EDMU): ESSWt;T (�)� EUP SWt;T (�) :

Lastly, we assume the VIX as the standard deviation of a normal distribution (with

mean zero) and derive VIX-implied tail risk indicators: VIXVaRtr, VIXUPtr, VIXEStr and

VIXEUPtr. Using these VIX-implied tail risk indicators, we introduce the following relative

tail risk indicators:
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� VaR-based tail risk di¤erence indicator (VaRD): VaRtr � VIXVaRtr.

� UP-based tail risk di¤erence indicator (UPD): UPtr � VIXUPtr.

� ES-based tail risk di¤erence indicator (ESD): EStr � VIXEStr.

� EUP-based tail risk di¤erence indicator (EUPD): EUPtr � VIXEUPtr.

A fatter tail represents a greater risk which is hardly captured by the VIX indicator.

The above four relative tail risk indicators convey information about non-normal features of

return distribution in the tail.

3 Data and methodology

We use OptionMetrics to obtain daily options data on the U.S. S&P500 index calls and

puts from January 1996 to December 2015. To be consistent with the VIX, we choose a

30-day horizon for the synthetic tail swap contracts. At each trading date, we choose the

two consecutive maturities which include the 30-day horizon within the range. We �rst

calculate tail risk indicators at each maturity and then linearly interpolate them to obtain

the corresponding 30-day horizon indicators.

At each maturity, we apply a �ltering algorithm into option price data to obtain rea-

sonable tail risk estimates. First, we delete option prices greater than $0.05 at the greatest

strike price for calls or at the lowest strike price for puts, which leads to the last out-of-

the-money (OTM) option prices of $0.05. Second, we allow at most two consecutive option

prices of $0.05 at the end of option series by cutting o¤ the extreme strike prices. Third, we

repetitively eliminate option price data which violate monotonicity of option price and/or its

�rst derivative. For comparison with the non-parametric method, we also apply Figlewski�s

(2008) semi-paramentric method to obtain tail risk indicators.4

4The Internet Appendix provides the Matlab codes to implement our method and Figlewski�s method
(2008).

12



4 Empirical analyses

In this section, we focus on downside tail risks and perform several empirical analyses. We

make comparison between our non-parametric estimates and Figlewski�s semi-paramentric

estimates of the tail risk indicators. We also characterize tail risk premia and the behavior

of tail risk indicators. Lastly, we examine whether tail risk indicators possess any additional

predictive power for future returns and future tail risks in the presence of the VIX index.

4.1 Comparison between non-parametric and semi-parametric tail

risk estimates

For comparison, we demonstrate the time trends of the VaRtr (Figure 1) and the EStr (Figure

2) obtained by our non-parametric method and the Figlewski�s semi-paramentric method.

Both tail risk estimates correspond to the tail event probability of 5% (� = 0:05). Although

both the non-parametric and the semi-paramentric methods largely yield similar estimates

for both indicators, the semi-paramentric method provides estimates that seem to be not

only unusually low levels in several days but also plagued with erratic �uctuations. Based

on this observation, we choose the non-parametric method as the benchmark method.

4.2 Tail risk premia

Do investors price tail risks? If investors price tail risks, the sample averages of the realized

payo¤s to the tail swap contracts will di¤er from the corresponding swap rates. Figure 3

shows the time trend of the realized VaRrp (Figure 3) and the realized ESrp (Figure 4) along

with the realized variance risk premium (VIXrp). As both tail risk swap contracts provide

positive payo¤s only when tail risk events occur, the realized tail risk premia exhibit patterns

which are quite di¤erent from the realized variance risk premium. Table 1 shows summary

statistics of various tail risk indicators. Both sample averages of the VaRrp and the ESrp

are signi�cantly negative. For the same reason, the sample proportion of positive tail risk

premia is 2.2% which is less than the ex-ante tail risk probability of 5%. Clearly, investors

are willing to accept a signi�cantly negative average return to hedge tail risks.

13



Can common risk factors explain the tail risk premia? To investigate whether the tail risk

premia are induced simply by the underlying return risk and return risk premium or represent

an additional source of risk, we run asset pricing regressions of the tail risk premia on conven-

tional common risk factors such as market portfolio�s excess return, Fama-French (1993) size

and boot-to-market ratio, Carhart�s (1997) momentum (MOM), Fama and French�s (2015)

operating pro�tability and investment factors. In addition, we also consider the variance risk

premium. Tables 2 and 3 report the regression results of the VaR and the ES tail risk premia

on various combinations of common risk factors, respectively. For both tail risk premia, the

risk-adjusted alphas (i.e., constant term in the regression) are signi�cantly negative and are

not much smaller than the average tail risk premia reported in Table 1. This result implies

that additional risk factors are called for explaining the tail risk premia. The beta estimates

of the market excess return are strongly negative in all cases. This result is related to the

fact that a tail risk event occurs only when the index return sharply declines. While the

Fama and French operating pro�tability factor is also signi�cantly and negatively associated

with the tail risk premia, other common risk factors are insigni�cant. Interestingly, although

the beta estimates of the variance risk premium are signi�cantly positive, the risk-adjusted

alphas are not smaller even after incorporating the variance risk premium. In sum, not only

the conventional common risk factors but also the variance risk factor fail to fully account

for the negative tail risk premia on the stock index.

Are tail risk premia constant or time-varying? We run regressions based on the expec-

tation hypothesis. Speci�cally, for the VaR tail risk swap, we run the following quantile

regression:

Q�Rt;T jDSW
t;T
(�) = a+ bDSW

t;T (�) + �t; (24)

where Q�Rt;T jDSW
t;T
(�) is the �-th quantile function of the negative of the stock index returns

conditional on the VaR tail risk indicator level. Under the null hypothesis of zero VaR tail

risk premium, Equation (19) posits that we have a = �; b = 1. In particular, the VaR

risk premium would be time-varying and correlated with the VaR tail risk indicator level

if b signi�cantly deviates from one. Similarly, for the UP tail risk swap, we run a quantile
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regression as follows:

QRt;T jUSWt;T (1� �) = a+ bU
SW
t;T (�) + �t: (25)

On the other hand, for the ES tail risk swap, we run the following linear regression:

�Rt;T � I
�
Rt;T � �DSW

t;T (�)
�
= a+ bDSW

t;T (�) + �t: (26)

Under the null hypothesis of zero ES risk premium and the expectation hypothesis equation

(22) ; we would have a = 0; b = 1. Still, the slope estimate less than one implies time-varying

risk premium. Similarly, for the EUP tail risk swap, we run a linear regression as follows:

Rt;T � I
�
Rt;T � USWt;T (�)

�
= a+ bUSWt;T (�) + �t: (27)

Table 4 reports the estimation results of the four expectation hypothesis regressions (24) to

(27) : Interestingly, there exists an asymmetric time variation between downside and upside

tail risk premiums. Speci�cally, the slopes of the VaRrp and the ESrp are signi�cantly less

than one (0.685 and 0.443, respectively), whereas the slopes of the UPrp and the EUPrp

are slightly less than one (0.941 and 0.827, respectively). It implies that downside tail risk

premia exhibit a more conspicuous time-varying feature than upside risk premia.

4.3 Behavior of tail risk indicators

Table 1 reports summary statistics of six tail risk indicators, that is, the VaRtr, the EStr,

the VaRD, the ESD, the DMU, and the EDMU, and their time trends are demonstrated

along with the VIX index in Figures 5 to 10, respectively. Table 5 shows correlations of the

tail risk indicators.

Do the tail risk indicators behave di¤erently from the VIX index? Figures 5 and 6 show

that both the VaRtr and the EStr closely co-move with the VIX index. Indeed, correla-

tion coe¢ cients between the VIX index and the VaRtr and the EStr are 0.965 and 0.981,

respectively. However, if we measure relative tail risks by subtracting the VIX-implied tail

risks under a normality assumption, the relative tail risk indicators show behaviors which

are quite di¤erent from that of the VIX index. Figures 7 and 8 show that the VaRD and
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the ESD behave di¤erently not only from the VIX index but also each other. Correlation

coe¢ cients between the VIX index and the VaRD and the ESD are reduced to 0.281 and

0.751, respectively, and the VaRD and the ESD are also weakly correlated (with correlation

coe¢ cient of 0.327). On the other hand, information from asymmetric changes in upside and

downside risks are relatively closely related with the VIX index, compared to the VaRD or

the ESD indicator. Figures 9 and 10 illustrate the DMU and the EDMU along with the VIX

index. Correlation coe¢ cients between the VIX and the DMU and the EDMU are 0.765 and

0.837, respectively, which are lower than those of the VaRtr and the EStr but higher than

those of the VaRD and the ESD. Both are also strongly correlated each other (with corre-

lation coe¢ cient of 0.808). In sum, whereas the VaRtr and the EStr behave similarly with

the VIX index, the VaRD and the ESD behave di¤erently not only from the VIX index but

also each other. The DMU and the EDMU lie in between the two groups of tail indicators.

Do the tail risk indicators gauge �investor fear�? It is well documented that when in-

vestor fear heightens, increased hedging demand for index puts a¤ects the VIX index level.

Speci�cally, the VIX index rises at a faster rate when the stock market falls than when it

rises. This relation is called as �leverage e¤ect�, and thus the VIX index is an �investor fear

gauge�. To investigate whether the tail risk indicators also respond more sensitively to a

stock market decline than its rise, we run the following linear regressions:

Yt = �0 + �1Rt + �2R
�
t + "t; (28)

where Rt denotes daily S&P500 index return, and R�t takes only negative return or zero

otherwise, i.e., R�t � min fRt; 0g :5 We regress daily changes of VaRtr (�V aRtrt) and EStr
(�EStrt), and daily VaRD, ESD, DMU, and EDMU using (28). Table 6 shows the regression

results not only for the tail risk indicators but also for the VIX index. Consistent with the

leverage e¤ect, the coe¢ cient �2 is signi�cantly negative for daily changes of VIX (�V IXt),

implying that the VIX index rises at a faster rate during a market down turn. Similar results

are also found for all of the tail risk indicators (although the coe¢ cient �2 for daily changes

of the EStr is statistically insigni�cant). It suggests that the tail risk indicators also gauge

5This regression equation is similar to that used in Whaley (2009).
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the �investor fear�.

4.4 Return predictability

Do tail risk indicators possess any predictive power of future stock returns? To empirically

evaluate the predictive power, we run the following linear predictive regressions:

Rt+1;t+h = �0 + �1Xt + �2�Xt + "t+1; (29)

where Rt+1;t+h denotes a h�horizon future stock return, Xt a time-t predictor variable, �Xt

daily change in X: Using the predictive regression model (29), we investigate whether the

VIX, the VaRtr, and the EStr possess any predictive power on future stock index returns.

Table 7 (Panel A) reports the regression results for various horizons: 1-, 2-, 3-, 4-week,

and 60-day. While the VIX and the VIX innovations are positively associated with future

S&P 500 index returns, the positive relation is statistically signi�cant only for the VIX

innovation.6 Similar results are obtained for the EStr and the VaRtr although the predictive

power of the VaRtr is statistically insigni�cant.

To examine whether the tail risk indicators possess additional information to forecast

future stock index returns, we employ the following linear predictive regressions:

Rt+1;t+h = �0 + �1V IXt + �2�V IXt + �3TRIt + "t+1; (30)

where TRIt denotes a time-t tail risk indicator. Table 7 (Panel B) shows the estimation

results of the regression (30) for each of the four tail risk indicators. Although current tail

risk indicators are positively associated with future stock index returns in the presence of

the VIX, their predictive ability is statistically insigni�cant.

As economic agents dislike tail risks, they require additional risk premium for holding high

tail-risk assets. Therefore, we expect that a high level of a tail risk indicator corresponds to a

high equity risk premium, or high equity return if tail risks are not realized. However, when

6This result is largely consistent with prior studies. Refer to, for example, Banerjee, Doran, and Peterson
(2007).
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crash occurs, the realized future return will be negative. As the size of the tail risk indicators

re�ect the strength of this expectation, a higher tail risk indicator would correspond to a

positive and higher future equity return in case of no-crash but a negative and lower future

return when crash occurs. To empirically evaluate this hypothesis, we use the following

linear explanatory regressions:

Rt+1;t+h = �0+ �1V IXt+ �2�V IXt+ �3TRIt�Dum?
t+1;t+h+ �4TRIt�Dumt+1;t+h+ "t+1;

(31)

where Dumt+1;t+h denotes a dummy variable which takes one when crash occurs during h-

horizon and zero otherwise, andDum?
t+1;t+h a dummy variable orthogonal toDumt+1;t+h (i.e.,

Dum?
t+1;t+h = 1 � Dumt+1;t+h).7 The coe¢ cients �3 and �4 in the regression (31) indicate

the relationship between a current tail risk indicator and future returns when crash does not

occur and when crash occurs, respectively. Table 7 (Panel C) shows the estimated �3 and �4
of the regression (31) for each of the four tail risk indicators. In most cases, the hypothesis is

statistically con�rmed. Current tail risk indicators are signi�cantly and positively associated

with future stock index returns when crash does not occur but signi�cantly and negatively

associated with future stock index returns when crash occurs.8

To check the robustness of the conditional relationship between current tail risk indica-

tors and future equity returns, we additionally analyze three sets of six (i.e., 18 in total)

portfolio returns: 2 � 3 size-by-book-to-market, size-by-operating-pro�tability, and size-by-
investment.9 Table 8 reports the explanatory regression results of 30-day portfolio returns.10

Main �ndings are as follows: First, current tail risk indicators are positively associated with

future portfolio returns during normal periods but negatively associated during crash pe-

riods in most cases. Second, the tail risk indicators di¤er with the statistical signi�cance

of the conditional relationship. The VaRD has a statistical insigni�cance of the conditional

relationship during crash periods while the conditional relationship for the EDMU is insignif-

7The crash is de�ned as an event when a return is less than the tenth percentile of the sample distribution
of returns.

8This result is largely consistent with Vilkov and Xiao (2012).
9The data for portfolio returns and risk factors are retrieved at Kenneth French�s data library.
10For 60-day horizon, we also obtain similar results which are available upon request.
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icant during normal periods. Third, the conditional relationship during normal periods is

signi�cantly observed only for big-sized stocks. We guess that this fact is attributable to

relatively stable returns of big stocks.

4.5 Risk predictability

Do tail risk indicators possess any forecasting power for future tail events? To empirically

assess the forecasting power, we perform the following logistic predictive regressions:

ln
pt+1;t+h

1� pt+1;t+h
= �0 + �1TRIt + "t+1; (32)

ln
pt+1;t+h

1� pt+1;t+h
= �0 + �1TRI

?
t + �2V IXt + "t+1; (33)

pt+1;t+h � Pr [Rt+1;t+h � R] = Pr [Dumt+1;t+h = 1] ; (34)

where Dumt+1;t+h denotes a dummy variable indicating a tail event which occurs when a

portfolio return is less than a threshold level R.

Similar to the above return predictability regressions, we consider the same four tail

risk indicators, the same sets of portfolio returns, and 30-day horizon. We choose the 10th

percentile of historical portfolio returns as the threshold portfolio return level. Table 9

shows the logistic predictive regression results of 30-day portfolio returns. The results are

summarized as follows: First, the results from the regression (32) show that increased current

tail risks tend to predict a higher probability of future tail risk events. Second, the regression

(33) shows that an inclusion of the VIX as a predictor variable not only lowers the forecasting

power of the tail risk indicators but also even reverses the predictive direction in some cases.

For example, the forecasting power of the VaRD becomes insigni�cant after the VIX is

included. The other three indicators show that their predictive direction becomes negative

in several cases. This result is understandable as each of the four tail risk indicators is

positively correlated with the VIX. Third, although the VaRD loses its forecasting power

in the presence of the VIX, the other three indicators still possess their forecasting powers.

The ESD, the EDMU, and the DMU are statistically signi�cant in 13, 13, and 7 cases (out

of 18 cases) even after controlling the forecasting power of the VIX.

19



Do tail risk indicators possess any predictive power of future ex ante tail risks? As the

VIX index is used as an underlying price upon which various derivatives are written, it might

be useful for investments to accurately predict future VIX index. In a similar vein, it might

be also useful to accurately predict future tail risk indicators, although tail risk indicators

are not used in practice yet. To examine the predictive power, we run the following linear

predictive regressions:

Yt+h = �0 + �1TRI
?
t + �2V IXt + �3Yt + "t+1; (35)

Yt+h = �0 + �1TRI
?
t + �2V IXt + "t+1; (36)

where Yt+h denotes an h�horizon future ex ante tail risk indicator. We include as a pre-
dictor variable each of the same four tail risk indicators (TRIs) orthogonal to the VIX and

investigate whether it has any additional predictive power. In addition to the two tail risk

indicators (VaRtr and EStr) to predict, we also consider the VIX index for comparison and

for its usefulness in the VIX-related derivatives trading. Four prediction horizons are con-

sidered: 1, 2, 3, and 4 weeks. We will apply the model (36) into the prediction of a future

VIX index and the model (35) otherwise.

Table 10 shows the results of the linear predictive regressions. For the prediction of the

two ex ante tail risk indicators, both the ESD and the EDMU posses signi�cant additional

predictive power for all horizons. Speci�cally, an increase in both indicators tend to predict

an increase in future ex ante tail risks. The VaRD possesses the predictive power for the

VaRtr over all horizons and for the EStr only over 1- and 2-week horizons. The DMU has the

predictive power only for the EStr over 1-, 2- and 3-week horizon. However, for the prediction

of the VIX index, the four tail risk indicators possess insigni�cant predictive powers in many

cases.

5 Conclusion

In this paper, we use the notion of a value-at-risk swap whose payo¤ depends upon a pre-

scribed tail risk event to derive left tail risk premium and tail risk indicators. In addition
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to the VaR, we also consider similar swaps based on the expected-shortfall. Based on an

asymmetry between downside risks and upside uncertainty, we also devise alternative swaps

using upside uncertainties. We use those tail risk swaps to propose several tail risk indicators

which are model-free and implied from equity index option prices.

We �nd that investors price tail risks and are willing to accept a signi�cantly negative

average return to hedge tail risks. Moreover, the tail risk premia are not induced simply by

the underlying return risk and return risk premium but represent an additional source of

risk. We also �nd that tail risk premia, speci�cally downside tail risk premia rather than

upside premia, are time-varying.

We show that all of the tail risk indicators also rise at a faster rate during a market

downturn and thus gauge the �investor fear�. We also investigate information contents

conveyed by tail risk indicators and �nd that they possess predictive powers not only for

future returns but also for future realized or ex ante tail risks.

The development of the VIX index has signi�cantly contributed to the importance of

volatility or variance risk in research and in practice as well. Similar with the success of the

VIX index, we expect that the proposed option-implied model-free tail risk indicators would

contribute to a more extensive usage of tail risks in various directions.
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Appendix
A1. Proof of Proposition 1.
We begin with the Breeden-Litzenberger (1978) formula:

fQ (K) = er(T�t)P 00 (K) ; (37)

where fQ (�) indicates a risk-neutral pdf of ST under some risk-neutral measure Q; P (K)
is a European put option prices with strike price K (and the current underlying asset price

St), and P 00 (K) denotes its second derivative. Under the risk-neutral measure Q; simple
algebraic manipulation yields

Pr Q
�
Rt;T � �DSW

t;T (�)
�
= Pr Q

h
ST � St � e�D

SW
t;T (�)

i
=

Z St�e
�DSWt;T (�)

0

fQ (K) dK

= er(T�t)
Z St�e

�DSWt;T (�)

0

P 00 (K) dK

= er(T�t)P 0
�
St � e�D

SW
t;T (�)

�
� er�P 0 (0)

= er(T�t)P 0
�
St � e�D

SW
t;T (�)

�
;

which leads to

�DSW
t;T (�) = logP

0�1
�
e�r(T�t)

�

100

�
� logSt: (38)

A2. Proof of Corollary 2.
We begin with the Breeden-Litzenberger formula:

fQ (K) = er(T�t)C 00 (K) ; (39)

where fQ (�) indicates a risk-neutral pdf of ST ; C (K) is a European call option prices with
strike price K (and the current underlying asset price St), and C 00 (K) denotes its second
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derivative. Under some risk-neutral measure Q; simple algebraic manipulation yields

Pr Q
�
Rt;T � USWt;T (�)

�
= Pr Q

h
ST � St � eU

SW
t;T (�)

i
=

Z 1

St�e
USW
t;T

(�)
fQ (K) dK

= er(T�t)
Z 1

St�e
USW
t;T

(�)
C 00 (K) dK

= er(T�t)C 0 (1)� er(T�t)C 0
�
St � eU

SW
t;T (�)

�
= �er(T�t)C 0

�
St � eUSWt;T (�)

�
;

which leads to

USWt;T (�) = logC 0�1
�
�e�r(T�t) �

100

�
� logSt: (40)

A3. Proof of Corollary 3.
Note that from the change of variables,

R = logST � logSt;

dR =
1

ST
dST ;

Pr Q [R < x] = Pr Q [ST < Ste
x] ;

FQR (x) = FQ (Ste
x) ;

fQR (x) = fQ (ST )ST ;
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we obtain

Z �DSW
t;T (�)

�1
R � fQR (R) dR =

Z SteDSW
t;T (�)

0

logK � fQ (K) dK � logSt
Z Ste

�DSWt;T (�)

0

fQ (K) dK

= er(T�t)
Z Ste

�DSWt;T (�)

0

logK � P 00 (K) dK � �

100
logSt

= er(T�t) � logK � P 0 (K)jSte
�DSWt;T (�)

0

�
Z Ste

�DSWt;T (�)

0

K�1P 0 (K) dK � �

100
logSt

= � �

100
DSW
t;T (�)�

Z Ste
�DSWt;T (�)

0

K�1P 0 (K) dK
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100
DSW
t;T (�)� S�1t eD

SW
t;T (�)P

�
Ste

�DSW
t;T (�)

�
�
Z Ste

�DSWt;T (�)

0

K�2P (K) dK;
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ESSWt;T (�) = D
SW
t;T (�) +

100

�

24P
�
Ste

�DSW
t;T (�)

�
Ste

�DSW
t;T (�)

+

Z Ste
�DSWt;T (�)

0

P (K)

K2
dK

35 :
A4. Proof of Corollary 4.
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From the change of variables and simple algebraic manipulation, we obtainZ 1

USWt;T (�)

R � fQR (R) dR =

Z 1

Ste
USW
t;T

(�)
logK � fQ (K) dK � logSt

Z 1

SteUSWt;T (�)

fQ (K) dK

= er(T�t)
Z 1

Ste
USW
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(�)
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logSt
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USW
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100
logSt
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�

100
USWt;T (�)�

Z 1
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C
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Figure 1. Time trend of the VaR-based tail risk indicators: non-parametric vs. semi-

parametric method.

This �gure shows the time trend of the VaR-based tail risk indicator (VaRtr) obtained by

the non-parametric method (above line and left y-axis) and the Figlewski�s semi-paramentric

method (below line and right y-axis). The VaRtr corresponds to the tail event probability

of 5% (� = 0:05).
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Figure 2. Time trend of the ES-based tail risk indicators: non-parametric vs. semi-

parametric method.

This �gure shows the time trend of the ES-based tail risk indicator (EStr) obtained by

the non-parametric method (above line and left y-axis) and the Figlewski�s semi-paramentric

method (below line and right y-axis). The EStr corresponds to the tail event probability of

5% (� = 0:05).
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Figure 3. Time trend of the realized VaR risk premium.

This �gure shows the time trend of the realized VaR risk premium (VaRrp, above line

and left y-axis) and also the realized VIX risk premium (VIXrp, below line and right y-axis).

The VaRrp corresponds to the tail event probability of 5% (� = 0:05).
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Figure 4. Time trend of the realized ES risk premium.

This �gure shows the time trend of the realized ES risk premium (ESrp, above line and

left y-axis) and also the realized VIX risk premium (VIXrp, below line and right y-axis).

The ESrp corresponds to the tail event probability of 5% (� = 0:05).
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Figure 5. Time trend of the VaR-based tail risk indicator.

This �gure shows the time trend of the VaR-based tail risk indicator (VaRtr, above line

and left y-axis) and also the VIX index (VIX, below line and right y-axis). The VaRtr

corresponds to the tail event probability of 5% (� = 0:05).
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Figure 6. Time trend of the ES-based tail risk indicator.

This �gure shows the time trend of the ES-based tail risk indicator (EStr, above line and

left y-axis) and also the VIX index (VIX, below line and right y-axis). The EStr corresponds

to the tail event probability of 5% (� = 0:05).
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Figure 7. Time trend of the VaR-based tail risk di¤erence indicator.

This �gure shows the time trend of the VaR-based tail risk di¤erence indicator (VaRD,

above line and left y-axis) and also the VIX index (VIX, below line and right y-axis). The

VaRD is the di¤erence between the VaRtr and the VIX-implied VaR level under normality

assumption and corresponds to the tail event probability of 5% (� = 0:05).
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Figure 8. Time trend of the ES-based tail risk di¤erence indicator.

This �gure shows the time trend of the ES-based tail risk di¤erence indicator (ESD, above

line and left y-axis) and also the VIX index (VIX, below line and right y-axis). The ESD is

the di¤erence between the EStr and the VIX-implied ES level under normality assumption

and corresponds to the tail event probability of 5% (� = 0:05).
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Figure 9. Time trend of the down-minus-up tail risk indicator.

This �gure shows the time trend of the down-minus-up tail risk indicator (DMU, above

line and left y-axis) and also the VIX index (VIX, below line and right y-axis). The DMU is

the di¤erence between the VaRtr and the UPtr and corresponds to the tail event probability

of 5% (� = 0:05).
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Figure 10. Time trend of the expected down-minus-up tail risk indicator.

This �gure shows the time trend of the expected down-minus-up tail risk indicator

(EDMU, above line and left y-axis) and also the VIX index (VIX, below line and right

y-axis). The EDMU is the di¤erence between the EStr and the EUPtr and corresponds to

the tail event probability of 5% (� = 0:05).
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Table 1. Summary statistics of various tail risk indicators.

This table shows summary statistics of various tail risk indicators, including the sample
mean, standard deviation, skewness, kurtosis, daily autocorrelation, and t-value. This table
also reports percentiles and the proportion of negative values (Pr(<0)).

Indicator Mean S.d. Skewness Kurtosis AC(1) t-val
VIXtr 20.902 8.163 1.93 9.56 0.98 172.23
VaRtr 0.102 0.044 2.01 10.49 0.94 156.29
EStr 0.159 0.065 2.11 10.57 0.97 164.55
VaRD 0.000 0.012 -0.47 21.29 0.50 1.52
ESD 0.032 0.020 2.49 17.17 0.88 107.40
DMU 0.032 0.021 2.06 13.16 0.79 100.34
EDMU 0.071 0.037 2.06 10.97 0.93 128.78
VIXrp -0.529 7.395 2.88 19.34 0.96 -4.81
VaRrp -0.028 0.147 6.50 43.27 0.60 -12.77
ESrp -0.005 0.022 8.56 89.05 0.76 -14.90

Percentile Pr(<0)
0.05 0.1 0.5 0.9 0.95

VIXtr 11.79 12.67 19.48 30.57 35.955 0.000
VaRtr 0.052 0.058 0.093 0.153 0.182 0.000
EStr 0.084 0.096 0.144 0.233 0.284 0.000
VaRD -0.015 -0.012 0.000 0.013 0.019 0.511
ESD 0.008 0.011 0.029 0.053 0.069 0.002
DMU 0.007 0.011 0.028 0.056 0.070 0.009
EDMU 0.028 0.035 0.063 0.111 0.144 0.003
VIXrp -8.892 -7.038 -1.577 6.174 10.811 0.645
VaRrp -0.050 -0.050 -0.050 -0.050 -0.050 0.978
ESrp -0.014 -0.012 -0.007 -0.005 -0.004 0.978
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Table 2. Asset pricing regressions of the VaR risk premium.

This table shows the results of linear time-series regressions of the VaR risk premium
(VaRrp) on various asset pricing factors, including market portfolio�s excess return (MKT),
Fama-French�s (1993) size (SMB) and boot-to-market ratio (HML), Carhart�s (1998) mo-
mentum (MOM), Fama and French�s (2015) operating pro�tability (RMW) and investment
(CMA) factors. In addition, the variance risk premium (VIXrp) is also considered. The
t-values are obtained according to Newey and West (1987). R2 is the unadjusted R-squared.

Model 1 Model 2 Model 3 Model 4
coef t-val coef t-val coef t-val coef t-val

const -0.021 -3.737 -0.021 -3.663 -0.019 -2.976 -0.017 -2.390
MKT -1.192 -4.437 -1.186 -4.469 -1.275 -4.480 -1.385 -4.281
SMB -0.045 -0.347 -0.015 -0.116 -0.277 -1.570
HML -0.021 -0.119 -0.120 -0.578 0.332 1.552
MOM -0.206 -1.648
RMW -0.670 -2.595
CMA -0.373 -1.150
R2 0.164 0.164 0.168 0.175

Model 5 Model 6 Model 7 Model 8
coef t-val coef t-val coef t-val coef t-val

const -0.021 -4.415 -0.021 -4.489 -0.020 -3.879 -0.018 -3.252
MKT -0.770 -4.590 -0.776 -4.610 -0.834 -4.485 -0.942 -4.502
SMB 0.064 0.500 0.077 0.605 -0.145 -1.017
HML 0.023 0.139 -0.030 -0.152 0.269 1.394
MOM -0.107 -0.957
RMW -0.572 -2.695
CMA -0.182 -0.660
VIXrp 0.005 3.692 0.005 3.774 0.005 3.679 0.005 3.918
R2 0.205 0.205 0.207 0.213

40



Table 3. Asset pricing regressions of the ES risk premium.

This table shows the results of linear time-series regressions of the ES risk premium (ESrp)
on various asset pricing factors, including market portfolio�s excess return (MKT), Fama-
French�s (1993) size (SMB) and boot-to-market ratio (HML), Carhart�s (1998) momentum
(MOM), Fama and French�s (2015) operating pro�tability (RMW) and investment (CMA)
factors. In addition, the variance risk premium (VIXrp) is also considered. The t-values are
obtained according to Newey and West (1987). R2 is the unadjusted R-squared.

Model 1 Model 2 Model 3 Model 4
coef t-val coef t-val coef t-val coef t-val

const -0.004 -3.416 -0.004 -3.273 -0.004 -2.984 -0.003 -1.875
MKT -0.196 -2.968 -0.196 -2.997 -0.200 -2.932 -0.238 -2.839
SMB -0.004 -0.204 -0.003 -0.138 -0.052 -1.287
HML -0.004 -0.118 -0.008 -0.242 0.072 1.865
MOM -0.010 -0.554
RMW -0.138 -1.905
CMA -0.083 -1.434
R2 0.177 0.178 0.179 0.212

Model 5 Model 6 Model 7 Model 8
coef t-val coef t-val coef t-val coef t-val

const -0.004 -4.330 -0.004 -4.327 -0.004 -4.402 -0.003 -2.732
MKT -0.116 -4.007 -0.117 -3.986 -0.112 -3.594 -0.154 -3.447
SMB 0.017 0.851 0.016 0.799 -0.027 -0.921
HML 0.005 0.185 0.010 0.350 0.060 1.710
MOM 0.010 0.634
RMW -0.119 -1.992
CMA -0.047 -0.968
VIXrp 0.001 2.584 0.001 2.637 0.001 2.639 0.001 2.720
R2 0.235 0.237 0.237 0.262
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Table 4. Expectation hypothesis regressions of tail risk premia.

This table shows the estimation results of the expectation hypothesis regressions of tail
risk premia. "Model" refers to the corresponding regression equations in the text. Standard
errors (s.e.) of the estimates are obtained according to Newey and West (1987).

Risk premium Model Regression Coef. estimate s.e.
VaRrp (24) Quantile a -0.0090 0.0038

b 0.6848 0.0332
UPrp (25) Quantile a -0.0007 0.0022

b 0.9406 0.0286
ES (26) Linear a 0.0620 0.0247

b 0.4427 0.1624
EUP (27) Linear a 0.0092 0.0061

b 0.8273 0.0782
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Table 5. Correlations of various tail risk indicators.

This table shows correlations of various tail risk indicators, tail risk premia and the VIX
index.

VIX VaRtr EStr VaRD ESD DMU EDMU VIXrp VaRrp ESrp
VIX 1.000
VaRtr 0.965 1.000
EStr 0.981 0.951 1.000
VaRD 0.281 0.519 0.302 1.000
ESD 0.751 0.743 0.862 0.327 1.000
DMU 0.765 0.876 0.799 0.734 0.752 1.000
EDMU 0.837 0.820 0.914 0.310 0.947 0.808 1.000
VIXrp 0.090 0.088 0.082 0.027 0.046 0.083 0.058 1.000
VaRrp 0.010 -0.009 0.017 -0.058 0.033 -0.036 0.015 0.399 1.000
ESrp -0.091 -0.103 -0.093 -0.074 -0.079 -0.120 -0.098 0.462 0.891 1.000
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Table 6. Regressions of tail risk indicators on stock market returns

This table shows the results of the regressions (Eq. (28)) of tail risk indicators on daily
stock market return (Rt) and the negative stock market return variable (R�t ) which is equal
to min fRt; 0g. The t-values of the estimates are obtained according to Newey and West
(1987).

Yt Explanatory variable R2

Const. Rt R�t
�V IXt coef -0.079 0.385 -4.231 0.003

t-val -2.114 0.342 -2.081
�V aRtrt coef -0.001 0.011 -0.031 0.001

t-val -2.341 1.496 -2.352
�EStrt coef -0.001 0.000 -0.029 0.002

t-val -1.581 -0.010 -1.618
V aRDt coef -0.002 0.037 -0.126 0.027

t-val -3.691 3.334 -4.969
ESDt coef 0.026 0.131 -0.343 0.067

t-val 17.489 3.434 -5.087
DMUt coef 0.025 0.160 -0.423 0.090

t-val 18.519 4.293 -6.349
EDMUt coef 0.059 0.282 -0.703 0.082

t-val 20.149 3.826 -5.542
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Table 7. Linear predictive regression of stock market index returns

This table shows the results of the linear predictive regressions of the S&P 500 index
returns on the VIX and tail risk indicators. Panel A reports the results of the regression
(29) : Panel B shows only the results of coe¢ cients corresponding to tail risk indicators of the
regression equation (30), and Panel C shows only the results of coe¢ cients corresponding to
tail risk indicators of the regression equation (31) : The t-values of the estimates are obtained
according to Newey and West (1987) and provided in the parenthesis. Bold numbers in the
t-values indicate statistical signi�cance at 5% level.

Horizon
1w 2w 3w 4w 60D

A. Regression (29)
const -0.001 0.000 0.000 0.001 -0.002

(-0.337) (0.019) (0.025) (0.075) (-0.171)
VIX 0.000 0.000 0.000 0.000 0.001

(0.696) (0.508) (0.528) (0.397) (0.671)
�VIX 0.001 0.001 0.001 0.001 0.000

(3.926) (3.241) (2.782) (1.983) (0.825)
R2 0.009 0.003 0.003 0.002 0.004
const -0.001 0.000 -0.001 -0.001 -0.004

(-0.729) (-0.127) (-0.171) (-0.163) (-0.338)
VaRtr 0.024 0.027 0.041 0.052 0.126

(1.136) (0.714) (0.813) (0.718) (0.872)
�VaRtr 0.030 0.036 -0.014 0.015 -0.023

(1.144) (1.347) (-0.427) (0.445) (-0.332)
R2 0.003 0.002 0.002 0.003 0.007
const -0.001 0.000 0.000 0.001 -0.005

(-0.336) (-0.008) (0.037) (0.088) (-0.372)
EStr 0.012 0.015 0.020 0.023 0.086

(0.717) (0.584) (0.563) (0.428) (0.879)
�EStr 0.100 0.084 0.086 0.059 0.007

(3.885) (2.982) (2.293) (1.318) (0.112)
R2 0.006 0.003 0.003 0.002 0.007
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Table 7. Continued.
Horizon

1w 2w 3w 4w 60D
B. Regression (30)

VaRD 0.062 0.078 0.110 0.239 0.372
(0.939) (1.010) (1.059) (1.743) (1.580)

ESD 0.005 0.039 0.028 0.016 0.472
(0.111) (0.431) (0.241) (0.110) (1.565)

DMU 0.020 0.016 0.019 0.101 0.393
(0.445) (0.261) (0.212) (0.823) (1.561)

EDMU -0.022 -0.020 -0.049 -0.045 0.241
(-0.688) (-0.321) (-0.577) (-0.415) (1.017)

C. Regression (31)
VaRD�Dum? 0.176 0.221 0.321 0.350 0.444

(2.604) (2.656) (2.468) (2.130) (1.705)
VaRD�Dum -0.409 -0.725 -0.872 -0.395 0.040

(-1.219) (-1.904) (-1.756) (-0.633) (0.060)
ESD�Dum? 0.209 0.256 0.314 0.309 0.865

(3.593) (3.216) (2.336) (1.886) (3.184)
ESD�Dum -0.923 -1.311 -1.543 -1.945 -2.342

(-11.049) (-9.168) (-6.504) (-6.344) (-4.543)
DMU�Dum? 0.227 0.278 0.311 0.402 0.663

(3.875) (3.815) (2.986) (2.501) (3.208)
DMU�Dum -0.858 -1.212 -1.530 -1.749 -2.678

(-10.239) (-11.919) (-8.247) (-5.717) (-5.992)
EDMU�Dum? 0.083 0.107 0.110 0.079 0.358

(2.877) (2.415) (1.527 (0.871) (2.203)
EDMU�Dum -0.478 -0.660 -0.806 -1.033 -1.279

(-14.827) (-12.281) (-8.049) (-7.773) (-5.483)
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Table 8. Linear predictive regression of 30 days portfolios returns

This table shows the results of the linear predictive regressions (31) of 30 days portfolio
returns on tail risk indicators. Three sets of six portfolio returns are predicted: 2 � 3 Size-
by-BM, Size-by-INV, and Size-by-OP. Only the coe¢ cient estimates of the tail risk indicatorb�3; b�4 and their t-values are reported. Each of four tail risk indicators (TRIs) is used as a
predictor variable. The t-values of the estimates are obtained according to Newey and West
(1987). Bold numbers in the t-values indicate statistical signi�cance at 5% level.

TRI TRI�Dum? TRI�Dumb�3 t-value b�4 t-value
Size ! Small Big Small Big Small Big Small Big

VaRD BM Low 0.319 0.288 1.295 1.847 -0.500 -0.502 -0.684 -0.919
Middle 0.278 0.365 1.239 2.031 -0.657 -0.768 -1.091 -1.251
High 0.241 0.448 0.811 1.595 -0.697 -0.844 -1.147 -1.227

INV Low 0.182 0.365 0.650 2.176 -0.675 -0.847 -1.024 -1.377
Middle 0.294 0.299 1.273 1.826 -0.656 -0.699 -1.189 -1.289
High 0.332 0.349 1.273 1.895 -0.454 -0.497 -0.758 -0.886

OP Low 0.319 0.453 1.160 1.993 -0.593 -0.476 -0.887 -0.754
Middle 0.296 0.405 1.246 2.320 -0.571 -0.718 -1.056 -1.180
High 0.230 0.231 0.964 1.520 -0.548 -0.525 -1.004 -1.040

ESD BM Low 0.254 0.501 0.923 2.852 -2.911 -1.663 -6.405 -5.375
Middle 0.214 0.295 1.114 1.691 -2.148 -1.906 -7.494 -6.519
High 0.142 0.267 0.675 1.286 -2.389 -2.334 -8.083 -7.116

INV Low 0.168 0.386 0.695 2.552 -2.570 -1.649 -7.145 -6.299
Middle 0.202 0.379 1.108 2.458 -2.064 -1.625 -7.737 -6.392
High 0.365 0.555 1.440 2.606 -2.494 -1.994 -6.497 -5.892

OP Low 0.308 0.529 1.142 2.324 -2.614 -2.195 -6.225 -6.104
Middle 0.241 0.428 1.288 2.476 -2.042 -1.805 -7.545 -6.274
High 0.196 0.419 0.928 2.628 -2.275 -1.564 -7.448 -5.689
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Table 8. Continued.
Model 1 Model 2b�1 t-value b�1 t-value

Size ! Small Big Small Big Small Big Small Big
DMU BM Low 0.383 0.402 1.525 2.669 -2.575 -1.772 -6.032 -6.276

Middle 0.208 0.297 1.022 1.758 -2.106 -1.857 -6.684 -6.807
High 0.132 0.234 0.569 1.083 -2.286 -2.303 -6.638 -6.414

INV Low 0.129 0.301 0.529 2.030 -2.541 -1.718 -6.463 -6.443
Middle 0.204 0.338 1.030 2.235 -1.988 -1.625 -6.789 -6.601
High 0.333 0.479 1.341 2.585 -2.476 -2.032 -6.317 -6.432

OP Low 0.275 0.433 1.091 2.004 -2.604 -2.278 -6.145 -6.157
Middle 0.228 0.339 1.123 2.014 -1.996 -1.873 -6.815 -6.476
High 0.169 0.309 0.748 2.069 -2.241 -1.685 -6.824 -6.170

EDMU BM Low -0.063 0.166 -0.404 1.631 -1.673 -0.951 -8.140 -7.080
Middle -0.077 0.020 -0.686 0.212 -1.275 -1.088 -9.461 -8.869
High -0.155 -0.049 -1.291 -0.398 -1.420 -1.338 -9.729 -8.234

INV Low -0.132 0.088 -0.967 0.994 -1.528 -0.936 -8.992 -7.996
Middle -0.071 0.118 -0.664 1.348 -1.210 -0.895 -9.393 -8.361
High -0.022 0.144 -0.151 1.171 -1.488 -1.171 -8.378 -7.675

OP Low -0.076 0.109 -0.487 0.837 -1.585 -1.283 -7.979 -7.262
Middle -0.043 0.085 -0.397 0.873 -1.193 -1.044 -9.077 -8.219
High -0.104 0.144 -0.855 1.551 -1.350 -0.867 -9.448 -7.341
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Table 9. Logistic predictive regression of tail events

This table shows the results of the logistic predictive regressions of 30 days portfolio tail
risks on tail risk indicators. The logistic predictive regression �Model 1�and �Model 2�are
de�ned by (32) and (33), respectively. A tail risk event occurs when portfolio return is less
than the 10th percentile of historical portfolio returns. Tail risk events of three sets of six
portfolio returns are predicted: 2 � 3 Size-by-BM, Size-by-INV, and Size-by-OP. Only the
coe¢ cient estimate of the tail risk indicator b�1 and its t-value are reported. Each of four
tail risk indicators (TRIs) is used as a predictor variable. Bold numbers in t-value indicate
statistical signi�cance at 5% level.

Model 1 Model 2b�1 t-value b�1 t-value
Size ! Small Big Small Big Small Big Small Big

VaRD BM Low 7.496 4.054 1.882 1.015 -2.517 -4.328 -0.743 -1.278
Middle 10.860 12.304 2.744 3.119 -1.114 -0.767 -0.328 -0.226
High 16.746 13.767 4.282 3.501 0.288 -2.393 0.084 -0.705

INV Low 10.537 10.199 2.660 2.573 -2.338 -0.111 -0.693 -0.032
Middle 12.794 10.499 3.247 2.651 -1.161 -1.515 -0.343 -0.448
High 6.125 6.551 1.535 1.642 -4.921 -3.882 -1.465 -1.153

OP Low 8.422 5.895 2.117 1.477 -3.221 -5.387 -0.957 -1.604
Middle 11.994 9.071 3.038 2.283 -2.096 -3.262 -0.621 -0.970
High 7.800 5.233 1.959 1.310 -3.328 -4.280 -0.989 -1.270

ESD BM Low 9.127 8.066 4.367 3.808 -16.023 -15.658 -4.255 -4.146
Middle 20.079 18.562 9.905 9.178 10.295 3.374 3.156 1.035
High 26.761 24.823 12.925 12.083 14.975 8.143 4.448 2.497

INV Low 19.436 15.469 9.598 7.656 4.448 4.648 1.370 1.423
Middle 21.863 17.270 10.742 8.549 8.666 2.457 2.665 0.749
High 14.325 10.109 7.078 4.885 -7.080 -16.631 -2.011 -4.422

OP Low 14.271 13.038 7.051 6.419 -6.917 -12.660 -1.967 -3.464
Middle 23.157 14.882 11.336 7.361 10.517 -7.558 3.211 -2.145
High 19.424 13.212 9.593 6.508 8.611 -4.044 2.653 -1.166
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Table 9. Continued.
Model 1 Model 2b�1 t-value b�1 t-value

Size ! Small Big Small Big Small Big Small Big
DMU BM Low 12.060 9.736 6.234 4.932 -4.859 -7.933 -1.570 -2.537

Middle 18.006 18.520 9.471 9.739 6.584 4.959 2.072 1.580
High 24.349 22.298 12.593 11.630 11.467 4.133 3.554 1.330

INV Low 18.515 14.628 9.736 7.658 3.784 3.572 1.213 1.129
Middle 20.650 16.714 10.822 8.788 7.623 2.474 2.404 0.795
High 15.130 12.284 7.933 6.359 -2.806 -7.133 -0.912 -2.300

OP Low 15.400 14.054 8.080 7.343 -1.835 -6.844 -0.596 -2.211
Middle 20.726 15.791 10.860 8.292 6.372 -2.864 2.025 -0.932
High 17.514 12.810 9.212 6.653 5.222 -3.519 1.655 -1.139

EDMU BM Low 6.829 5.823 6.128 5.128 -7.639 -8.946 -3.359 -3.900
Middle 11.956 11.741 11.103 10.907 9.569 5.861 4.307 2.675
High 15.747 14.675 14.312 13.455 13.820 7.656 6.075 3.482

INV Low 12.104 9.461 11.238 8.743 6.283 4.923 2.867 2.232
Middle 13.379 10.772 12.366 10.004 9.757 4.078 4.395 1.862
High 9.777 7.226 9.051 6.525 -1.110 -8.840 -0.503 -3.890

OP Low 9.547 8.800 8.828 8.094 -1.808 -6.431 -0.817 -2.869
Middle 13.876 9.995 12.791 9.262 10.480 -1.930 4.703 -0.875
High 11.901 8.455 11.053 7.752 9.338 -1.437 4.207 -0.646

50



Table 10. Linear predictive regressions of ex ante tail risks

This table reports the results of the linear predictive regressions of two ex ante tail risk
indicators (VaRtr and EStr) and the VIX index. The linear predictive regression model (35)
is speci�ed for the two ex ante tail risk indicators, and the model (36) is speci�ed for the VIX.
Four prediction horizons are considered: 1, 2, 3, and 4 weeks. Only the coe¢ cient estimate
of the tail risk indicator b�1 and its t-value are reported. Each of four tail risk indicators
(TRIs) is used as a predictor variable. The t-values of the estimates are obtained according
to Newey and West (1987). Bold numbers in the t-values indicate statistical signi�cance at
5% level.

Ex ante Horizon b�1 t-value
tail risk VaRD ESD DMU EDMU VaRD ESD DMU EDMU
VaRtr 1w 0.649 0.165 -0.066 0.074 5.436 5.574 -1.199 4.415

2w 0.757 0.156 -0.061 0.074 4.068 3.576 -1.009 3.025
3w 0.760 0.141 -0.004 0.067 3.375 3.576 -0.083 2.730
4w 0.767 0.129 0.018 0.065 2.890 3.109 0.234 2.192

EStr 1w 0.152 0.858 0.199 0.180 3.563 4.241 4.202 3.701
2w 0.134 1.043 0.175 0.202 2.675 3.377 3.695 3.725
3w 0.101 1.157 0.143 0.219 1.806 2.899 2.901 3.327
4w 0.026 1.171 0.099 0.218 0.417 2.472 1.746 2.570

VIX 1w 4.903 -1.610 2.172 -2.110 1.083 -0.570 0.580 -1.290
2w -0.849 -4.327 -5.147 -4.029 -0.213 -0.911 -1.725 -1.670
3w -5.964 -7.715 -9.742 -5.412 -1.197 -1.706 -2.760 -1.846
4w -13.653 -7.805 -14.874 -5.944 -2.181 -1.328 -2.873 -1.517
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