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Do Peso Problems Explain Positive Alpha in Hedge Funds? 
 
 

Abstract 
 
 Hedge funds are known to produce significantly positive OLS-regression alphas. I test 
whether the positive OLS alpha could be consistent with a rational outcome from a peso problem. 
To test this, I construct a two-state regime-switching model which can capture a potential future 
crash state with a small probability. By applying the time-series version of testing a peso problem 
based on Ang, Gu, and Hochberg (2007), I provide evidence that an ex-ante rational expectation 
of zero alpha can frequently produce an ex-post positive OLS alpha. My results suggest that the 
positive OLS alpha in hedge funds can be a rational outcome. 
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1. Introduction 

This paper investigates whether apparently positive hedge fund alphas can be explained by 

a peso problem. The main motivation follows from the insight in Stulz (2007). He views that hedge 

funds engage in trading strategies that provide payoffs similar to those of an insurance company 

that sells earthquake insurance. Thus, the insurance company enjoys positive profits during normal 

times, but once a disaster hits the company, it would lose all the cumulative profits from good 

times. Therefore, as long as a hedge fund faces a non-zero probability of a crash event, but the 

crash event occurred less frequently in the sample period than was rationally expected ex-ante, we 

should see positive hedge fund alphas from ex-post historical data. 

To test a peso problem hypothesis, I take the following steps. First, in order to confirm the 

existence of positive alphas from ex-post historical data, I run a traditional OLS regression with 

the Capital Asset Pricing Model (CAPM) for thirteen hedge fund index returns, and find that eight 

out of thirteen indexes have significantly positive OLS alphas. Second, I estimate parameter values 

of a two-state regime-switching model from historical data under the ex-ante rational expectations 

null of a zero expected value of alpha. Third, based on these parameter estimates, I simulate new 

time-series returns data 5,000 times for each index, and construct the small sample distribution of 

the OLS alpha. Finally, I provide evidence that the new data based on ex-ante rational expectation 

generate positive OLS alpha frequently, making the originally significant alpha in the first step 

become mostly insignificant (seven out of eight significant alphas become insignificant with p-

values greater than 5%). Therefore, the significantly positive OLS alpha of hedge funds can be a 

rational outcome under the presence of a peso problem, which is consistent with the insight of 

Stulz (2007). 
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My approach to test for a peso problem is based on the following prior literature. The peso 

problem has been raised as a potential answer to solve seemingly irrational market behavior such 

as the equity premium puzzle (Rietz (1988), Cecchetti, Lam, and Mark (1993), Jorion and 

Goetzmann (1999), and Barro (2006)), the foreign exchange risk premium puzzle (Evans and 

Lewis (1995)), the term structure anomaly (Bekaert, Hodrick, and Marshall (2001)), and IPO long-

run underperformance (Ang, Gu, and Hochberg (2007)). Interestingly, most of the papers rely on 

a regime-switching model. In addition, Evans (1996), in the survey paper on “peso problem”, 

documents that a regime-switching model provides a formal framework to test a peso problem 

because the problem can be created by the potential for discrete shifts in the distribution of future 

shocks. Thus, a regime-switching model is a reasonable choice to test the peso problem for the 

positive hedge fund alpha. 

This paper is also related to the non-normal and non-linear behavior of hedge fund returns. 

These non-normal and non-linear behaviors are expected because hedge funds typically engage in 

dynamic trading strategies that can generate non-normal and non-linear payoffs based on 

derivatives, short-sales, and high leverages. Thus, the traditional performance measures such as 

the Sharpe ratio and Jensen’s alpha may prematurely conclude that hedge funds produce superior 

returns. In particular, both the Sharpe ratio and the Jensen’s alpha underestimate the possibility of 

a future crash state. The Sharpe ratio relies on volatility based on historical return data that do not 

contain enough crash events and the Jensen’s alpha assumes the normal distribution of errors that 

assigns a smaller probability to a future crash event than what is rationally expected. Therefore, 

the results in this paper are also consistent with the efforts to find a new metric for hedge fund 

performance (e.g. Goetzmann, Ingersoll, Spiegel, and Welch (2007)). 
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The rest of the paper is organized as follows. Section 2 discusses the data and provides 

summary statistics. Section 3 reports the results from a traditional OLS regression for the CAPM 

model. Section 4 explains the main methodology for testing a peso problem using a two-market 

and two-fund state regime-switching model, reports the results from the model, and provides the 

results from a robustness check. Section 5 concludes. 

 

2. Data and Summary Statistics 

For the hedge fund’s style-based index level analysis, I use Credit Suisse/Tremont hedge 

fund index monthly return data1 from January 1994 to October 2014.2 According to the data 

provider, each index is an asset-weighted index of funds that report timely and accurate net asset 

value (NAV) of fund every month, have audited financial statements, manage at least $50 million 

assets, and maintain at least one-year track record. In addition, index represents at least 85% of 

assets under management in selection universe for each sector. I also use the monthly return of 

S&P 500 index to proxy for the market return. The one-month Treasury bill rate from Ibbotson 

Associates is used to proxy for the monthly risk-free rate.3 

Table 1 reports the summary statistics for monthly time-series returns of thirteen hedge 

fund indexes (twelve style-based indexes and one composite hedge fund index) and the market. 

Panel A presents distributional characteristics such as four moments (mean, standard deviation, 

skewness, and kurtosis) of time-series returns, Sharpe ratios based on annualized average excess 

                                                 
1 The data can be freely downloaded from http://www.hedgeindex.com. 
2 I exclude multi-strategy index because the return data is available from April 1994. 
3 Kenneth French’s website provides the data. 
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returns and annualized standard deviations of excess returns, and normality test statistics based on 

the Jarque-Bera (1987) test. Traditional portfolio theory tells us that the market is mean-variance 

efficient. However, eight out of thirteen indexes have higher Sharpe ratios than the market. Since 

the Sharpe ratio is based on only two moments of time-series returns, it can be a proper measure 

only when other moments do not matter much, which is not the case in here. Several hedge fund 

index returns have negative skewness and positive excess kurtosis. As a formal normality test 

statistics, the Jarque-Bera test shows that twelve out of thirteen indexes reject the normality of 

their time-series returns, and their Jarque-Bera statistics are greater than that of the market. Hence, 

the time-series return behaviors of hedge fund indexes are clearly different not only from the 

normal distribution but also from the market return behavior.  

Panel B reports the p-values of the Durbin-Watson statistics to test the positive 

autocorrelation of time-series returns for each hedge fund index and the market. I consider the 

autocorrelations of current month returns with up to six-month previous returns. Contrary to the 

statistically insignificant autocorrelations of the market returns, nine out of thirteen hedge fund 

indexes show significantly positive autocorrelations with past month returns, having less-than-5% 

p-values. Furthermore, six hedge fund indexes have significantly positive autocorrelations with 

longer-than-one-month previous returns. Combining with the results from panel A, it is clear that 

most of hedge fund index returns violate the typical assumptions on errors that are independently 

and identically distributed (IID) in an OLS regression. 
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3. OLS Regressions 

In this section, I report the OLS time-series regression results which are conventionally 

used to measure the performance of each hedge fund index. The capital asset pricing model 

(CAPM) is used as a benchmark risk model. Table 2 shows the OLS regression results. The 

patterns of alphas are generally consistent with the patterns of Sharpe ratios reported in table 1. 

Eight out of thirteen indexes earn significantly positive alphas. 

Hedge funds are typically designed to have relatively low correlations with the stock 

market. The OLS regression results show that most of hedge funds generally have low correlations 

with the market. Eleven out of thirteen indexes have betas that are less than 0.5 in an absolute term. 

Moreover, twelve indexes have the adjusted ܴଶ values that are less than 50%. 

 

4. Regime-Switching Model and Test of a Peso Problem 

4.1. Bayesian Estimation using Gibbs Sampling and Test of Zero Alpha in the CAPM 

The CAPM regression model can be viewed as a regime-switching model with one market 

state and one fund state. Hence, I first apply the main methodologies, both Gibbs sampling and 

test based on simulated data, to the CAPM regression model. First, I estimate the parameters of 

the following CAPM regression model using Gibbs sampling method under the null hypothesis of 

 :௜ = 0ߙ

  2
, , , ,, 0,i t i i m t i t i t ir r where IID N       : , (1) 
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 ௠,௧ is the excess return of the S&Pݎ ௜,௧ is the excess return of hedge fund index i in month t andݎ

500 index in month t. A general procedure of estimating the model is given in the Appendix. By 

iterating the Gibbs sampling procedure 5000 more times after initial 2000 burn-in periods, the 

posterior distribution of each parameter is obtained.  

Table 3 reports the mean and standard deviation of the posterior distribution for each 

parameter value. The parameter estimates are similar to the results in previous tables. The 

estimated betas are very close to the beta estimates in table 2. The patterns of estimated 

idiosyncratic volatilities across hedge fund indexes are also similar to the patterns of annualized 

standard deviations in table 1. In addition, the adjusted ܴଶ values are almost identical to those 

reported in table 2.  

Second, I test whether the originally reported (in table 2) OLS alpha of each hedge fund 

index is indeed significantly positive under the null hypothesis of the model. For each hedge fund 

index, I generate a new time-series return data from the model based on the parameter estimates. 

Given the new return data, I run the same OLS CAPM regression as in section 3, and obtain a new 

OLS alpha. By repeating the procedure 5000 times, I can construct the distribution of newly 

obtained OLS alphas, and check where the originally reported OLS alpha is located in the 

distribution. As a test statistic, I report p-value representing the probability that a randomly chosen 

new OLS alpha under the null hypothesis is greater than the originally reported OLS alpha. Table 

3 reports the original OLS alpha and corresponding p-value for each hedge fund index in the right-

end column. Interestingly, the results are consistent with the conventional judgments based on t-

statistics in table 2. As reported in table 2, eight out of thirteen hedge fund indexes show p-values 

that are less than 5%, so that their OLS alphas are still abnormally positive from the perspective 

of the equation (1) with zero alpha value. 
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4.2. Regime-Switching Model 

The traditional OLS regression is based on the normality assumption with independently 

and identically distributed errors (or returns). The results reported in table 1, however, show that 

most of hedge fund index returns are far from the normality assumption because their returns show 

negative skewness and positive excess kurtosis. In addition, most of hedge fund index returns have 

significantly positive autocorrelations. Furthermore, the OLS regression requires the parameter 

coefficients to be constant over time, which may lead to a poor fit to explain the time-series 

variation of hedge fund index returns. 

A regime-switching model is an alternative to overcome the weaknesses of the OLS 

regression. A regime-switching model is particularly suitable for generating non-normal 

characteristics such as negative skewness and positive kurtosis because the model allows multiple 

states, and the errors are assumed to be drawn from a different normal distribution across states. 

In other words, one aspect of a regime-switching model can be viewed as a mixture of normal 

distributions, which has a good property of capturing the above mentioned non-normal 

characteristics. Another advantage of using a regime-switching model comes from a transition 

probability matrix. For example, a two-state regime-switching model has a 2×2 transition matrix. 

As long as each diagonal probability is greater than 50%, there will be a higher-than-50% chance 

to face the same state in the next period, which can cause a positive autocorrelation. Therefore, a 

regime-switching model is better than the traditional OLS model for describing hedge fund index 

returns. 

A regime-switching model is also useful for testing a peso problem. A peso problem is 

often associated with a rare event that has not been sufficiently reflected in the sample. Agarwal 
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and Naik (2004) show that a large number of hedge fund strategies exhibit payoffs from writing a 

put option. Lo (2001) and Fung, Xu, and Yau (2002) also show that the down-market betas for 

hedge funds are higher than the up-market betas. These results suggest that hedge funds tend to 

make a severe loss in a crash period, which happens with a small probability. Thus, if hedge funds 

have not sufficiently experienced the rare event, the historical average return of hedge funds would 

be higher than the true expected return reflecting both a normal time and a small probability of 

crash, which can cause a peso problem. For the purpose of testing the peso problem, a regime-

switching model is useful because the parameter values of the model can be estimated under the 

null hypothesis that the expected alpha is zero, which is different from the null hypothesis that the 

alpha is constantly zero in the OLS regression. 

 

4.3. Regime-Switching Model and Test of a Peso Problem 

In specifying a regime-switching model, we need to consider a variable that might 

experience a significant change in structure. In addition, it is also important to determine the 

number of regimes for the variable of interest. Furthermore, the specified regime-switching model 

should be useful for testing a peso problem. 

In here, I specify a regime-switching model as follows: 

 , , , , , ,

, , , ,

( ) ( ) ( )

( ) ( )
i t i i t i m t m t i i t i t

m t m m t m m t m t

r s s r s

r s s u

   

 

  

 
, (2) 

where ݎ௜,௧ is the excess return of hedge fund index i in month t and ݎ௠,௧ is the excess return of the 

S&P 500 index in month t. In addition,	ߝ௜,௧ and ݑ௠,௧ are IID N(0,1). For the excess market return, 
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I assume that the market state ,m ts  follows a Markov chain that can take a value in {1, 2} at time 

t. I also impose (1) (2)m m   and (1) (2)m m   to classify two market states in a meaningful way. 

Market state 1 can be viewed as high market return and low market volatility state, and market 

state 2 as low market return and high market volatility state. Once market states are determined, 

the coefficient ,( )i m ts  represents the sensitivity of each hedge fund index return to the excess 

market return conditioning on the market state. Although the beta of each hedge fund index 

depends on the market state ( ,m ts ), the other parameters of each hedge fund index, alpha and 

idiosyncratic volatility, depend on its own state ( ,i ts ). Similar to the market state, I assume that 

each hedge fund state ,i ts  follows a Markov chain that can take a value in {1, 2} at time t. I also 

impose the restriction, (1) (2)i i  , to classify two states so that the first state can be viewed as 

a lower idiosyncratic volatility state and the second state as higher. In addition, a transition 

probability matrix iP  in the Markov chain for each hedge fund index state takes the following 

form: 

   11 11

2 2
22 22

1

1

i i
i i

jk i i

P P
P P

P P

 
    

, (3) 

where , , 1Pr( | )i
jk i t i tP s k s j    and j and k can take a value in {1, 2}. Furthermore, the stable 

probability of each hedge fund state, 1 2( )i i i    , can be computed as follows: 

 22
1 2 1

11 22

1
1

2

i
i i i i i i

i i

P
P and

P P
  

      
 

. (4) 
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The main focus in this paper is to test for a peso problem. Ang, Gu, and Hochberg (2007) 

uses a regime-switching model for testing whether the long-run underperformance of an IPO can 

be explained by a peso problem. They assume that an IPO firm’s stock return is drawn from one 

of the three possible states, outperforming, benchmark, or underperforming states. Under the null 

hypothesis of an ex-ante average benchmark performance, they construct a small sample 

distribution of ex-post CARs (cumulative abnormal returns) and test for a peso problem by 

reporting the p-value of historical CARs under the small sample distribution. Their methodology 

can be viewed as a cross-sectional version of testing a peso problem. Building on their 

methodology, this paper uses a regime-switching model for a time-series version of testing a peso 

problem. 

In the previous specification of a two-state regime-switching model, a hedge fund’s alpha 

can be drawn from one of the two possible states, low or high idiosyncratic volatility states. To 

test for a peso problem, the model is estimated under the null hypothesis that the expected value 

of alpha is zero: 

 1
0 1 2

2

(1)
: ( ) (1) (2) 0 (2)

i
i i i

i i i i i
H E

      


      . (5) 

In the regime-switching model, the first state is interpreted as a quiet and normal state and the 

second state is interpreted as a volatile and crash risk state. In other words, a rational investor, who 

has a view on ex-ante zero average alpha of a hedge fund, expects the fund to face one of the two 

states: state 1 with a small positive alpha, a low idiosyncratic volatility, and a high probability of 

occurrence, or state 2 with a large negative alpha, a high idiosyncratic volatility, and a low 

probability of occurrence. 
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Under the null hypothesis of rational expectation assumption, I estimate parameters in the 

two-state regime-switching model by using a Bayesian Gibbs sampling procedure. Given that each 

parameter value of the regime-switching model is based on the conditioning state, and the final 

likelihood function is highly nonlinear and complex, the Gibbs sampling method can be more 

attractive than a traditional maximum likelihood estimation method in terms of efficiency and 

computational speed. 

As in section 4.1, I construct the posterior distribution of parameters by iterating the Gibbs 

sampling procedure 5000 times after 2000 times burn-in period, and report the mean and standard 

deviation of the posterior distribution for each parameter value. In addition, based on the mean 

parameter estimates, I simulate new hedge fund return data under the rational expectation 

assumption, and obtain an OLS alpha from the new return series. By repeating the procedure 5000 

times, I can construct the small sample distribution of OLS alphas for each hedge fund index under 

the null of ex-ante zero average alpha. Finally, I provide a peso problem test statistics, the p-value 

of the original OLS alpha based on historical data under the small sample distribution. 

 

4.4. Results 

Table 4 reports the mean and standard deviation of the posterior distribution for each 

parameter value. Due to the way of defining each hedge fund state, there are a large differential 

between two idiosyncratic volatilities across two states. For example, the “Long/Short Equity” 

index has a volatility of 1.49% per month in the first state, but the index has a volatility of 7.52% 

per month in the second state. Interestingly, the two states are associated with clearly different 

level of unconditional stable probabilities ( 1  and 2 ). The stable probabilities of the first state 
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are in the range of 77.60~93.30%, while those of the second state are in the range of 6.70~22.40%. 

Therefore, the estimation results of the regime-switching model suggest that the first state can be 

viewed as the normal state with a low volatility and a high chance of occurrence, and the second 

state can be viewed as the crash state with a high volatility and a low chance of occurrence.  

The null hypothesis in equation (5) makes it possible that the regime-switching model 

estimates each hedge fund’s alpha values across states under the rational expectation assumption. 

For examples, the “Long/Short Equity” index has a monthly alpha of 0.21% per month in the 

normal state, while the index has a monthly alpha of -2.33% per month in the crash state.  

Finally, I report p-values to test for a peso problem. Following Ang, Gu, and Hochberg 

(2007), I generate new time-series return data for each hedge fund index based on the parameter 

estimates under the rational expectation assumption. For each newly generated time-series return 

data, I run the OLS regression and obtain an OLS alpha value. By repeating the procedure 5000 

times, I construct the small sample distribution of OLS alpha value, and test whether the historical 

OLS alpha is statistically significant under the distribution. As a test statistic, p-value represents 

the probability that a rational investor expects higher value than the historical OLS alpha under 

the null hypothesis. If the historical OLS alpha is abnormally high under the rational expectation 

assumption, the p-value should be less than 5%. On the other hand, if the peso problem can explain 

the significantly positive OLS alpha, the p-value should be greater than 5%. Interestingly, table 4 

reports that twelve out of thirteen hedge fund indexes have p-values greater than 5%. These results 

suggest that most of hedge fund index returns are consistent with a rational outcome under the 

assumption that the expected value of alpha is zero.  
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4.5. When Both Alphas are Zero across Two States 

The regime-switching model used in Section 4.4 has many different features from the OLS 

regression. For example, Ang and Chen (2007) document that time-varying betas can frequently 

produce the significantly positive OLS alpha. To examine whether time-varying betas alone in the 

regime-switching model can frequently produce the significantly positive OLS alpha, the two-state 

regime-switching model is estimated under the following null hypothesis, 0 : (1) (2) 0i iH    . If 

the p-value of the historical OLS alpha for each hedge fund index is greater than 5% under the null 

hypothesis, then the result would suggest that the significantly positive OLS alpha is mostly driven 

by time-varying betas, not by the peso problem. 

Table 5 reports the p-values in the last column of the table, suggesting that time-varying 

betas alone cannot explain the significantly positive OLS alpha. The p-values for eight out of 

thirteen indexes are less than 5%, which is similar to the result of the OLS regression. Therefore, 

the results in table 5 imply that the peso problem is the most likely source for explaining the 

significantly positive OLS alpha.  

 

5. Conclusion 

This paper takes a step to explain the significantly positive OLS alphas in hedge funds from 

the perspective of a peso problem. The main motivation comes from the insight of Stulz (2007) 

that the payoffs of hedge funds are similar to those of an insurance company that sells earthquake 

insurance. Thus, within our sample period that does not include enough crash event, the positive 

OLS alphas of hedge funds can be consistent with a rational expectation. 
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I construct a time-series version of testing a peso problem which builds on the cross-

sectional version of testing a peso problem in Ang, Gu, and Hochberg (2007). To capture hedge 

funds’ crash state with a small probability, a two-state regime-switching model is used. Under the 

null hypothesis that the expected value of alpha is zero, the model’s parameter values are estimated 

by a Bayesian Gibbs sampling method. Interestingly, simulated hedge fund returns based on the 

null hypothesis often lead to positive OLS alphas, suggesting that the significantly positive OLS 

alphas in hedge funds can be a rational outcome. In addition, a robustness check suggests that the 

result is not driven by time-varying betas. 
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Appendix 

The procedure of estimating the regime-switching model using Gibbs sampling is adapted 

from the Appendix in Ang, Gu, and Hochberg (2007), whose methodology builds on Kim and 

Nelson (1999). 

For hedge fund index i, the parameter set to be estimated is  

Θ	 ≡ 	 ൫ߙ෤௜, ,෨௜ߚ ,෤௜ߪ ෨ܲ௜; ,෤௠ߤ	 ,෤௠ߪ ෨ܲ௠൯. 

The Bayesian Gibbs sampling procedure generates random numbers from the following 

conditional distribution under a certain restriction. In the following algorithm, one loop simulates 

a drawing from the joint posterior distribution of all the state variables and the parameters of the 

model, given the data: 

A1) Generate ̃ݏ௠, conditional on ߤ෤௠, ߪ෤௠, ෨ܲ௠, and ̃ݎ௠. 

A2) Generate ߤ෤௠, conditional on ̃ݏ௠, ߪ෤௠, and ̃ݎ௠. 

A3) Generate ߪ෤௠, conditional on ̃ݏ௠, ߤ෤௠, and ̃ݎ௠. 

A4) Generate ෨ܲ௠, conditional on ̃ݏ௠. 

A5) Generate ̃ݏ௜, conditional on ߙ෤௜, ߚ෨௜, ߪ෤௜, ෨ܲ௜, ̃ݎ௜, and ̃ݎ௠. 

A6) Generate ߙ෤௜ and ߚ෨௜, conditional on ̃ݏ௜, ̃ݏ௠, ߪ෤௜, ෨ܲ௜, ̃ݎ௜, and ̃ݎ௠. 

A7) Generate ߪ෤௜, conditional on ̃ݏ௜, ̃ݏ௠, ߙ෤௜, ߚ෨௜, ̃ݎ௜, and ̃ݎ௠. 

A8) Generate ෨ܲ௜, conditional on ̃ݏ௜. 
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Table 1 
Summary Statistics of Monthly Hedge Fund Index Returns 

 
Panel A reports distributional characteristics such as four moments (mean, standard deviation, skewness and kurtosis) 
of monthly hedge fund index returns, the Sharpe ratios, Jarque-Bera (1987) normality test statistics and corresponding 
p-values. Both mean and standard deviation are reported in annualized percentage forms. Panel B reports p-values of 
Durbin-Watson statistics to test for the presence of positive auto-correlation up to six months for each hedge fund 
index returns. The sample period is from January 1994 to October 2014.   
 
 

Panel A: Distributional Characteristics 
Style   mean std Sharpe skew kurt JB-stat p-value

Hedge Fund Index 8.43 7.19 0.80 -0.17 2.91 84.54 0.00
Convertible Arbitrage 7.10 6.59 0.67 -2.71 17.43 3,334.65 0.00
Dedicated Short Bias -4.48 16.40 -0.44 0.74 1.64 48.46 0.00
Emerging Markets 8.00 14.09 0.38 -0.78 5.88 367.60 0.00
Equity Market Neutral 5.32 9.78 0.27 -12.31 177.95 323,012.40 0.00
Event Driven 9.08 6.12 1.05 -2.21 10.90 1,384.89 0.00
     Distressed 10.05 6.36 1.16 -2.18 11.44 1,498.77 0.00
     Multi-Strategy 8.64 6.62 0.90 -1.73 7.73 717.62 0.00
     Risk Arbitrage 6.00 4.07 0.83 -0.94 4.50 236.49 0.00
Fixed Income Arbitrage  5.45 5.41 0.51 -4.66 34.70 12,922.53 0.00
Global Macro  10.85 9.22 0.89 0.08 4.48 198.74 0.00
Long/Short Equity  9.39 9.50 0.71 -0.02 3.63 129.94 0.00
Managed Futures  5.81 11.46 0.27 0.01 0.00 0.01 0.99
S&P 500 Index   10.30 14.97 0.51 -0.70 1.14 32.52 0.00

 
 

Panel B: P-values of Durbin-Watson Statistics for Positive Auto-correlation Test 
Style  Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 

Hedge Fund Index 0.00 0.04 0.14 0.54 0.30 0.48 
Convertible Arbitrage 0.00 0.00 0.01 0.11 0.34 0.24 
Dedicated Short Bias 0.09 0.77 0.56 0.85 0.91 0.65 
Emerging Markets 0.00 0.18 0.26 0.63 0.87 0.92 
Equity Market Neutral 0.13 0.28 0.01 0.46 0.70 0.87 
Event Driven 0.00 0.00 0.01 0.14 0.52 0.56 
     Distressed 0.00 0.00 0.00 0.06 0.28 0.56 
     Multi-Strategy 0.00 0.00 0.01 0.28 0.66 0.63 
     Risk Arbitrage 0.00 0.33 0.67 0.57 0.00 0.07 
Fixed Income Arbitrage 0.00 0.00 0.03 0.13 0.80 0.79 
Global Macro 0.08 0.20 0.07 0.74 0.00 0.81 
Long/Short Equity 0.00 0.10 0.46 0.82 0.99 0.08 
Managed Futures 0.31 0.98 0.97 0.40 0.77 0.94 
S&P 500 Index  0.10 0.65 0.07 0.21 0.37 0.83 
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Table 2 
OLS Regression Results for the CAPM 

 
This table reports the results of OLS regressions for the Capital Asset Pricing Model (CAPM) using monthly hedge 
fund index returns. For each parameter value, the first row reports the estimated value and the second row reports its 
corresponding t-statistic. The alpha estimate is reported in a percentage form. The adjusted R2 value from the 
regression is also reported. S&P 500 index is used as a proxy for the market portfolio. The sample period is from 
January 1994 to October 2014.  
 
 

Capital Asset Pricing Model (CAPM) 
Style alpha sp500rf adj.-R2 

Hedge Fund Index 0.30 0.27 0.3248 
(2.81) (10.99) 

Convertible Arbitrage 0.27 0.16 0.1260 
(2.36) (6.07) 

Dedicated Short Bias -0.06 -0.84 0.5959 
(-0.33) (-19.19) 

Emerging Markets 0.12 0.51 0.2887 
(0.54) (10.10) 

Equity Market Neutral 0.10 0.19 0.0862 
(0.56) (4.95) 

Event Driven 0.37 0.26 0.3960 
(4.22) (12.82) 

     Distressed 0.45 0.26 0.3744 
(4.85) (12.25) 

     Multi-Strategy 0.33 0.26 0.3373 
(3.36) (11.30) 

     Risk Arbitrage 0.19 0.13 0.2456  
(2.99) (9.06) 

 

Fixed Income Arbitrage 0.15 0.12 0.1056 
(1.62) (5.51) 

Global Macro 0.59 0.14 0.0516 
(3.58) (3.81) 

Long/Short Equity 0.29 0.42 0.4483 
(2.23) (14.26) 

Managed Futures 0.30 -0.06 0.0018 
    (1.40) (-1.21)   
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Table 3 
Bayesian Gibbs Sampling Estimation of OLS Regression and Test of Zero Alpha 

 
This table reports the results from a Bayesian Gibbs sampling method of the OLS regression for thirteen hedge fund 
index monthly returns under the null of zero alpha value. For each parameter, first and second rows report the mean 
and standard deviation of the posterior distribution of each parameter, respectively. The adjusted R2 value from the 
regression is also reported. By generating new time-series return data 5000 times based on the mean parameter 
estimates for each hedge fund index, the small sample distribution of the OLS alpha for each index is constructed. 
Finally, I report the p-value, the probability that an OLS alpha in the small sample distribution exceeds the historical 
OLS alpha (the first row in “OLS_alpha” column, which is alpha in table 2), for each index. The sample period is 
from January 1994 to October 2014.  
 
 

Capital Asset Pricing Model (CAPM) 

 Under H0: alpha = 0 OLS_alpha 
Style β σ adj.-R2 (p-value) 

Hedge Fund Index 0.2835 0.0172 0.3270 0.0030 
(0.0249) (0.0008) (0.0024) 

Convertible Arbitrage 0.1671 0.0179 0.1290 0.0027 
(0.0260) (0.0008) (0.0102) 

Dedicated Short Bias -0.8463 0.0300 0.5975 -0.0006 
(0.0442) (0.0013) (0.6376) 

Emerging Markets 0.5127 0.0344 0.2916 0.0012 
(0.0497) (0.0016) (0.2994) 

Equity Market Neutral 0.1972 0.0268 0.0898 0.0010 
(0.0389) (0.0012) (0.2908) 

Event Driven 0.2690 0.0142 0.3975 0.0037 
(0.0204) (0.0007) (0.0000) 

     Distressed 0.2743 0.0151 0.3757 0.0045  
(0.0224) (0.0007) (0.0000) 

     Multi-Strategy 0.2678 0.0158 0.3394 0.0033 
(0.0228) (0.0007) (0.0008) 

     Risk Arbitrage 0.1390 0.0102 0.2480 0.0019 
(0.0146) (0.0005) (0.0024) 

Fixed Income Arbitrage 0.1251 0.0149 0.1090 0.0015 
(0.0217) (0.0007) (0.0522) 

Global Macro 0.1635 0.0264 0.0544 0.0059 
(0.0382) (0.0012) (0.0002) 

Long/Short Equity 0.4333 0.0205 0.4503 0.0029 
(0.0296) (0.0009) (0.0122) 

Managed Futures -0.0493 0.0333 0.0057 0.0030 
   (0.0490) (0.0015)   (0.0790) 

 



Table 4 
Bayesian Gibbs Sampling Estimation of a Regime-Switching Model and Test of a Peso Problem 

 
This table reports the results from a Bayesian Gibbs sampling method of the regime-switching model with two market states and two fund states for thirteen hedge 
fund index monthly returns under the null of zero expected value of alpha. Alpha and idiosyncratic volatility (sigma) depend on each fund state, but beta depends 
on the market state. P11 and P22 denote diagonal components (state 1 to state 1, and state 2 to state 2, respectively) of transition probability matrix. For each parameter, 
first and second rows report the mean and standard deviation of the posterior distribution of each parameter, respectively. Π1 and Π2 are the stable probability of 
state 1 and 2, respectively. The adjusted R2 value from the regression is also reported. By generating new time-series return data 5000 times based on the mean 
parameter estimates for each hedge fund index, the small sample distribution of the OLS alpha for each index is constructed. Finally, I report the p-value, the 
probability that an OLS alpha in the small sample distribution exceeds the historical OLS alpha (the first row in “OLS_alpha” column, which is alpha in table 2), 
for each index. The sample period is from January 1994 to October 2014. 

 

 

OLS_alpha
Style alpha(1) alpha(2) beta(1) beta(2) sig(1) sig(2) P11 P22 π1 / π2 adj.-R2 (p-value)

Hedge Fund Index 0.0040 -0.0294 0.2881 0.2184 0.0110 0.0475 0.9449 0.6423 0.8665 0.3000 0.0030
(0.0009) (0.0159) (0.0503) (0.0304) (0.0011) (0.0134) (0.0240) (0.1250) 0.1335 (0.0600)

Convertible Arbitrage 0.0045 -0.0429 0.0699 0.0797 0.0106 0.0628 0.9651 0.6996 0.8959 0.0835 0.0027
(0.0008) (0.0199) (0.0431) (0.0215) (0.0007) (0.0169) (0.0157) (0.1268) 0.1041 (0.1222)

Dedicated Short Bias 0.0005 -0.0064 -1.0013 -0.8159 0.0256 0.0587 0.8851 0.3886 0.8419 0.6205 -0.0006
(0.0029) (0.0229) (0.1125) (0.0573) (0.0021) (0.0265) (0.1195) (0.2736) 0.1581 (0.4810)

Emerging Markets 0.0062 -0.0258 0.3745 0.4123 0.0189 0.0641 0.9605 0.8632 0.7760 0.3272 0.0012
(0.0016) (0.0180) (0.0849) (0.0439) (0.0018) (0.0108) (0.0205) (0.0697) 0.2240 (0.2532)

Equity Market Neutral 0.0033 -0.0443 0.1022 0.1173 0.0088 0.2546 0.9772 0.6817 0.9330 0.2628 0.0010
(0.0006) (0.0166) (0.0377) (0.0166) (0.0004) (0.1473) (0.0124) (0.2148) 0.0670 (0.7918)

Event Driven 0.0051 -0.0655 0.2638 0.1909 0.0110 0.0456 0.9723 0.6588 0.9250 0.6577 0.0037
(0.0008) (0.0227) (0.0432) (0.0241) (0.0008) (0.0222) (0.0102) (0.1426) 0.0750 (0.3066)

     Distressed 0.0059 -0.0744 0.2749 0.1806 0.0121 0.0575 0.9753 0.6972 0.9246 0.5910 0.0045
(0.0009) (0.0263) (0.0482) (0.0281) (0.0009) (0.0353) (0.0105) (0.1385) 0.0754 (0.2660)

     Multi-Strategy 0.0050 -0.0646 0.2444 0.2089 0.0128 0.0435 0.9727 0.6547 0.9268 0.6211 0.0033
(0.0009) (0.0231) (0.0516) (0.0259) (0.0009) (0.0221) (0.0106) (0.1541) 0.0732 (0.3476)

     Risk Arbitrage 0.0025 -0.0331 0.1359 0.1122 0.0091 0.0301 0.9680 0.5823 0.9288 0.4585 0.0019
(0.0007) (0.0135) (0.0368) (0.0177) (0.0006) (0.0288) (0.0147) (0.2136) 0.0712 (0.3162)

Fixed Income Arbitrage 0.0040 -0.0424 0.0418 0.0513 0.0069 0.0505 0.9577 0.5802 0.9084 0.3234 0.0015
(0.0006) (0.0157) (0.0296) (0.0147) (0.0005) (0.0120) (0.0139) (0.1261) 0.0916 (0.2160)

Global Macro 0.0070 -0.0280 0.1122 0.0187 0.0127 0.0585 0.9713 0.8916 0.7909 -0.1400 0.0059
(0.0012) (0.0238) (0.0625) (0.0360) (0.0025) (0.0231) (0.0203) (0.1370) 0.2091 (0.0230)

Long/Short Equity 0.0021 -0.0233 0.5122 0.3757 0.0149 0.0752 0.9766 0.7549 0.9129 0.4114 0.0029
(0.0011) (0.0161) (0.0575) (0.0353) (0.0009) (0.0226) (0.0112) (0.1260) 0.0871 (0.1830)

Managed Futures 0.0026 -0.0120 0.3186 -0.1372 0.0299 0.0499 0.8523 0.4420 0.7907 0.1780 0.0030
(0.0064) (0.0278) (0.1452) (0.0617) (0.0028) (0.0348) (0.1669) (0.2584) 0.2093 (0.4074)

A Two-State Regime-Switching CAPM (where alpha and sig are fund-state dependent, and beta is market-state dependent)
Estimates under (H0: Expected value of alpha = 0) and (sig(1) < sig(2))
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Table 5 
Bayesian Gibbs Sampling Estimation of a Regime-Switching Model and Test of Zero Alpha 

 
This table reports the results from a Bayesian Gibbs sampling method of the regime-switching model with two market states and two fund states for thirteen hedge 
fund index monthly returns under the null of zero alpha value. Idiosyncratic volatility (sigma) depends on each fund state, but beta depends on the market state. P11 
and P22 denote diagonal components (state 1 to state 1, and state 2 to state 2, respectively) of transition probability matrix. For each parameter, first and second 
rows report the mean and standard deviation of the posterior distribution of each parameter, respectively. Π1 and Π2 are the stable probability of state 1 and 2, 
respectively. The adjusted R2 value from the regression is also reported. By generating new time-series return data 5000 times based on the mean parameter 
estimates for each hedge fund index, the small sample distribution of the OLS alpha for each index is constructed. Finally, I report the p-value, the probability that 
an OLS alpha in the small sample distribution exceeds the historical OLS alpha (the first row in “OLS_alpha” column, which is alpha in table 2), for each index. 
The sample period is from January 1994 to October 2014. 
 

 

OLS_alpha
Style beta(1) beta(2) sig(1) sig(2) P11 P22 π1 / π2 adj.-R2 (p-value)

Hedge Fund Index 0.3464 0.2212 0.0092 0.0254 0.9678 0.9376 0.6598 0.3318 0.0030
(0.0402) (0.0345) (0.0007) (0.0024) (0.0211) (0.0413) 0.3402 (0.0104)

Convertible Arbitrage 0.1444 0.0946 0.0108 0.0458 0.9667 0.7653 0.8756 0.1086 0.0027
(0.0405) (0.0253) (0.0007) (0.0081) (0.0186) (0.1085) 0.1244 (0.0212)

Dedicated Short Bias -0.9915 -0.8136 0.0241 0.0496 0.8251 0.4742 0.7504 0.6037 -0.0006
(0.1029) (0.0532) (0.0027) (0.0224) (0.1836) (0.3263) 0.2496 (0.4622)

Emerging Markets 0.4621 0.4160 0.0189 0.0553 0.9742 0.9307 0.7287 0.2821 0.0012
(0.0778) (0.0446) (0.0014) (0.0055) (0.0216) (0.0513) 0.2713 (0.3208)

Equity Market Neutral 0.1546 0.1213 0.0094 0.3379 0.9872 0.3425 0.9810 0.0777 0.0010
(0.0366) (0.0180) (0.0005) (0.1869) (0.0075) (0.2541) 0.0190 (0.3660)

Event Driven 0.3463 0.2140 0.0120 0.0549 0.9738 0.4716 0.9527 0.3949 0.0037
(0.0454) (0.0259) (0.0007) (0.0471) (0.0199) (0.1987) 0.0473 (0.0008)

     Distressed 0.3691 0.2293 0.0127 0.0616 0.9589 0.5509 0.9161 0.3770 0.0045
(0.0485) (0.0325) (0.0013) (0.0847) (0.0514) (0.2670) 0.0839 (0.0000)

     Multi-Strategy 0.3235 0.2194 0.0132 0.0468 0.9633 0.4945 0.9322 0.3364 0.0033
(0.0518) (0.0284) (0.0008) (0.0220) (0.0303) (0.1919) 0.0678 (0.0020)

     Risk Arbitrage 0.1782 0.1371 0.0064 0.0137 0.9238 0.8971 0.5747 0.2469 0.0019
(0.0279) (0.0194) (0.0007) (0.0015) (0.0541) (0.0995) 0.4253 (0.0028)

Fixed Income Arbitrage 0.1192 0.0481 0.0079 0.0487 0.9747 0.7248 0.9157 0.0754 0.0015
(0.0297) (0.0193) (0.0004) (0.0107) (0.0129) (0.1326) 0.0843 (0.1042)

Global Macro 0.2272 0.0349 0.0121 0.0391 0.9826 0.9655 0.6648 0.0528 0.0059
(0.0543) (0.0346) (0.0008) (0.0030) (0.0122) (0.0204) 0.3352 (0.0014)

Long/Short Equity 0.5431 0.3793 0.0143 0.0568 0.9777 0.7822 0.9073 0.4571 0.0029
(0.0521) (0.0422) (0.0013) (0.0214) (0.0156) (0.1413) 0.0927 (0.0480)

Managed Futures 0.3371 -0.1344 0.0257 0.0360 0.5559 0.6939 0.4080 0.0754 0.0030
(0.1276) (0.0613) (0.0062) (0.0144) (0.2564) (0.2698) 0.5920 (0.3642)

A Two-State Regime-Switching CAPM (where alpha and sig are fund-state dependent, and beta is market-state dependent)
Estimates under (H0: alpha(1) = alpha (2) = 0) and (sig(1) < sig(2))


